

Distribution of Volatile Composition in 'Marion' (*Rubus* Species *Hyb*) Blackberry Pedigree

Xiaofen Du, † Chad Finn, § and Michael C. Qian *,†

[†]Department of Food Science and Technology, Oregon State University, Corvallis, Oregon 97331 and §Horticultural Crops Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Corvallis, Oregon 97330

The distribution of volatile constituents in ancestral genotypes of 'Marion' blackberry's pedigree was investigated over two growing seasons. Each genotype in the pedigree had a specific volatile composition. Red raspberry was dominated by norisoprenoids, lactones, and acids. 'Logan' and 'Olallie' also had a norisoprenoid dominance but at much lower concentrations. The concentration of norisoprenoids in other blackberry genotypes was significantly lower. Terpenes and furanones were predominant in wild 'Himalaya' blackberry, whereas terpenes were the major volatiles in 'Santiam'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amount. The chiral isomeric ratios of 11 pairs of compounds were also studied. Strong chiral isomeric preference was observed for most of the chiral compounds, and each cultivar had its unique chiral isomeric distribution. An inherent pattern was observed for some volatile compounds in the 'Marion' pedigree. Raspberry and 'Logan' had a very high concentration of β -ionone, but was reduced by half in 'Olallie' and by another half in 'Marion' as the crossing proceeded. A high content of linalool in 'Olallie' and a low content in 'Chehalem' resulted in a moderate content of linalool in their progeny 'Marion'. However, the concentration of furaneol in 'Marion' was higher than in its parents. A high content of (S)-linalool in 'Olallie' and a racemic content of (S)-,(R)-linalool in 'Chehalem' resulted in a preference for the (S)-form in 'Marion'.

KEYWORDS: Blackberry volatile; stir bar sorptive extraction (SBSE); microvial insert thermal desorption; Marion pedigree

INTRODUCTION

'Marion' blackberry (*Rubus* sp. L.) was released in 1956 by the cooperative breeding program of the U.S. Department of Agriculture—Agricultural Research Service and the Oregon Agricultural Experiment Station. The pedigree of 'Marion' is quite complicated (**Figure 1**) (*I*). 'Chehalem' and 'Olallie' are the parents of 'Marion'. 'Chehalem' partly originates from wild 'Himalaya'. 'Olallie' has a red raspberry parent in its ancestry. The entire ancestry of 'Marion' is incomplete, and it may never be determined with complete accuracy.

'Marion' has an outstanding aroma and flavor quality; however, its canes are thorny. Consumer preference for 'Marion' flavor has stimulated the breeding program to develop thornless cultivars with 'Marion' type flavor. Blackberry plant breeding is a long process where thousands of seedlings need to be evaluated in the process of developing each new cultivar. Part of the reason the process is slow is that in each stage of evaluation (seedling, selection, advanced selection) it takes 2-3 years for the plants to be mature enough have fruit to evaluate. If the flavor makeups of the parents are known, and the flavor traits are heritable, it could be possible to "formulate" the parents and increase the

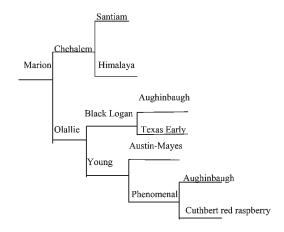


Figure 1. 'Marion' blackberry pedigree.

possibility of breeding in the desirable flavor attribute to new selections.

Breeding in flavor attributes is very complicated, and very few studies have reported the volatile heritability in berry fruits. From the volatile analysis of hybrids, it has been suggested that some compounds such as 3-methyl-2-butenoic and 3-methyl-3-butenoic acids, linalool oxides, α -terpineol, mesifurane, furaneol, alcohols, and esters are inherited in raspberry, strawberry,

^{*}Author to whom correspondence should be addressed [telephone (541) 737-9114; fax (541) 737-1877; e-mail michael.qian@oregonstate.edul.

and highbush blueberry (2-4). However, it is difficult to make general conclusions of the patterns of inheritance of the volatile compounds in fruits.

More extensive studies on the inheritance of volatile compounds in fruits use a large number of seedlings or progenitors to make a statistical analysis. Most information for aroma inheritability is from studies on strawberry (5-7). Aroma analysis shows different models of inheritance of different compounds, which is not surprising considering that the multiplicity of volatile compounds is derived from different biochemical pathways. For instance, methyl anthranilate, a major compound in strawberry, was detectable in only one-fourth of the offspring of a cross between a parent that had fruit with detectable methyl anthranilate with one that had no detectable methyl anthranilate (5). This low degree of inheritance suggests that this important compound can be easily lost in the breeding process. Transgressive segregation, where the offspring has levels of compounds higher or lower than either parent is common. For instance in a cross of a strawberry parent whose fruit had no detectable methyl butanoate with one that had low levels, the offspring had fruit that ranged from no detectable methyl butanoate to fruit with levels $5\times$ the level of the parent with detectable levels (5).

Very little is known of volatile heritability in blackberries, and the volatile composition in each genotype in the 'Marion' pedigree has not been fully studied. The objective of this study was to investigate the distribution of volatile constituents and enantiomeric ratio of some chiral compounds throughout the 'Marion' pedigree.

MATERIALS AND METHODS

Chemicals. All of the chemical standards used in this study are listed in Tables 1 and 2. Methanol (HPLC grade) was from EM Science (Gibbstown, NJ), and dichloromethane (HPLC grade) was from Burdick & Jackson (Muskegon, MI). Standard stock solutions of 7-methyl-3-methylene-1,6-octadiene (myrcene) and 6-heptyloxan-2-one (δ -dodecalactone) were prepared in dichloromethane individually at a concentration of 10 mg/mL, and all other stock solutions were prepared in methanol individually. Two sets of internal standards were prepared. Internal standard A was composed of 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (eucalyptol), 4-methyl-2-propan-2-ylphenol (isothymol), 4-heptanolide-4,5-dihydro-5-propyl-2(3H)-furanone (γ -heptalactone), and 1-(2-hydroxy-5-methylphenyl)ethanone with concentrations of 3.4, 8.3, 7.6, and 3.5 mg/L; internal standard B was 1-(2-hydroxy-5-methylphenyl)ethanone with a concentration of 70 mg/L.

Anhydrous sodium sulfate (99.9%, ACS certified) was supplied by Mallinckrodt Baker (Phillipsburg, NJ). Fructose, glucose, and citric acid were from Lancaster (Ward Hill, MA); sucrose and malic acid were from Spectrum (Gardena, CA). Synthetic juice contained 3.0% fructose, 3.1% glucose, 0.2% sucrose, 0.8% citric acid, and 0.9% malic acid. Citrate buffer solution (0.2 M, pH 3.1) was freshly prepared.

Berry Samples. Fully ripe berry samples including 'Marion', 'Chehalem', 'Santiam', 'Himalaya', 'Olallie', 'Logan', and 'Meeker' red raspberry were hand-harvested from plants growing in research plots at Oregon State University Lewis-Brown Farm in Corvallis, OR, between June and July of the 2007 and 2008 growing seasons. The berries were individually quick frozen (IQF) and stored at −18 °C until analysis. During analysis, 100 g of IQF berry fruit was thawed in a refrigerator (1 °C). Equal weights of distilled water and 1% calcium chloride (final concentration) were added, and the sample was then blended in a glass jar (Waring Products Div., Dynamics Corp. of America, New Hartford, CT) in high-speed pulse mode for 20 s. The puree was centrifuged for 20 min at 5000 rpm. The supernatant was filtered through a Waterman no. 1 filter paper (particle retention $> 11 \,\mu\text{m}$), followed by a VWR 413 filter paper (particle retention $5 \mu m$). The filtered clear juice was used for analysis.

Brix and Titratable Acidity. Brix was measured at room temperature using a PAL-1 pocket refractometer (Atago USA, Inc., Bellevue, WA). Titratable acidity was measured by mixing 7 mL of juice sample with 50 mL of boiled water and titrating with 0.1 N NaOH to an end point of pH 8.1 and is reported as percentage of citric acid.

Stir Bar Sorptive Extraction (SBSE)-GC-MS Analysis. Ten milliliters of berry juice was added to a 20 mL vial, to which 3 g of sodium chloride and 20 µL of internal standard A solution were added. A stir bar (Twister) coated with poly(dimethylsiloxane) (PDMS) phase (1 cm length, 0.5 mm thickness, Gerstel Inc., Baltimore, MD) was used to extract volatile compounds. The sample was extracted with the Twister bar for 2 h at a speed of 1000 rpm. After extraction, the Twister bar was rinsed with distilled water, dried with a tissue paper, and placed into a sample holder for GC-MS analysis.

GC-MS analysis was performed using an Agilent 6890 gas chromatograph with a 5973 mass selective detector (Agilent, Santa Clara, CA). Samples were loaded into the TDU by a multipurpose autosampler (Gerstel Inc.). A cooled injection system (CIS4, Gerstel Inc.) was used in the GC-MS system. A glass liner packed with 1 cm of Tenax sorbent (TA, 60/80, Supelco, Bellefonte, PA) was used in the CIS4 injector.

The TDU has an initial temperature of 25 °C. After the sample was loaded, the TDU was heated at a rate of 300 °C/min to a final temperature of 250 °C with a 1 min hold. TDU injection was in splitless mode during thermal desorption, whereas the CIS4 was in a solvent vent mode with a venting flow of 60 mL/min for 4.7 min, at a venting pressure of 22.8 psi. After the solvent vent, the CIS4 was switched to splitless mode for 3.0 min and then changed to split mode with a venting flow of 50 mL/min. The initial temperature of CIS4 was kept at -80 °C for 0.2 min and then ramped at a rate of 10 °C/s to a final temperature of 250 °C with a 10 min hold.

Compound separation was achieved with a DB-WAX column (30 m \times 0.25 mm i.d., 0.25 μ m film thickness, Phenomenex, Torrance, CA). The oven temperature was programmed at 40 °C for a 2 min hold and then increased to 230 °C at a rate of 4 °C/min with a 6 min hold at the final temperature. A constant helium column flow of 2.5 mL/min was used. A column splitter was used at the end of the column, 1 mL/min column flow was introduced to the MS, and the other 1.5 mL/min column flow was vented out. The MS transfer line and ion source temperatures were 280 and 230 °C, respectively. Electron ionization mass spectrometric data from m/z35 to 350 were collected using a scan rate of 5.27/s, with an ionization voltage of 70 eV.

Standard calibration curves were built up for quantitative analysis. Individual stock solution was diluted in synthetic juice to make the first level mixed standard solution, which was then diluted at a 1:9 (v/v) ratio with synthetic juice to obtain the concentration range (Table 1). Twenty microliters of internal standard was added to the diluted solution. Volatiles were then extracted using a stir bar, as done for the sample. Standard calibration curves were obtained through Chemstation software using selected mass ions (Tables 1 and 2) and were used to calculate the concentrations of volatile compounds in the samples. Triplicate analysis was performed for each sample.

Solid Phase Extraction (SPE)—Direct Microvial Insert Thermal **Desorption GC-MS for Polar Compounds.** Polar volatile compounds including butanoic acid, 2-methylbutanoic acid, phenylmethanol, 2-phenylethanol, and Furaneol (Table 2) were determined using a SPE-direct microvial insert thermal desorption technique described previously, with some modification (8). Ten milliliters of berry juice was passed through a preconditioned Lichrolut-EN cartridge (200 mg, 3 mL, from Merck, Darmstadt, Germany, preconditioned with 5 mL of methanol followed by 10 mL of distilled water). After the sample was loaded, the SPE cartridge was washed with 20 mL of distilled water and then gently dried with air. The retained volatile compounds were eluted with 1 mL of methanol. Twenty microliters of internal standard B was added, and the eluent was dried with anhydrous sodium sulfate. Ten microliters of the extract was loaded into a 200 µL glass insert and placed into the sample holder of the TDU for GC-MS analysis. The TDU and GC-MS conditions were the same as described previously, except that the TDU was heated at a rate of 100 °C/min to the final temperature and the initial CIS4 temperature was kept at 25 °C.

Individual stock solution of butanoic acid, 2-methylbutanoic acid, phenylmethanol, 2-phenylethanol, and Furaneol was diluted in methanol to make the first level mixed standard solution and then diluted with methanol to a serial concentration (Table 2). Twenty microliters of internal standard was added to the diluted solution. Ten microliters of solution was used to build the calibration curves.

Table 1. Chemical Standards and MS Fragments Used for Quantitative Analysis by SBSE Method

chemical	source, purity	quantify ions	qualify ions	slope ^a	intercept	R ²	range ^b (μg/L)
1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane ^c (eucalyptol)	Aldrich, 99%	81	108, 154				
ethyl butanoate	Aldrich, ≥98%	71	60, 88	0.45	+0.02	0.995	0.5-200
hexanal	Aldrich, ≥97%	56	72, 82	0.17	+0.01	0.967	0.5-600
2-methyl-5-(1-methylethyl)-1,3-cyclohexadiene (α -phellandrene)	Aldrich	93	77, 136	0.29	-0.15	0.985	0.5 - 170
7-methyl-3-methylene-1,6-octadiene (myrcene)	K&K Lab, NY	93	69, 41	0.30	+0.21	0.957	0.5 - 250
4-methyl-1-(1-methylethyl)-1,3-cyclohexadiene (α -terpinene)	TCI American, 90%	121	93, 136	0.38	-0.11	0.988	0.5-210
1-methyl-4-prop-1-en-2-yl-cyclohexene (limonene)	Aldrich, ≥97%	68	93, 67	0.12	+0.28	0.976	1-390
heptan-2-one	Sigma-Aldrich, 99%	43	58, 71	0.54	+0.07	0.971	0.5-400
methyl hexanoate	Aldrich, ≥99%	74	87, 99	1.81	+0.03	0.994	0.5 - 180
(E)-hex-2-enal	Aldrich, ≥95%	69	55, 41	0.16	+0.07	0.960	0.5 - 720
ethyl hexanoate	Aldrich, ≥98%	88	99, 101	1.59	-0.08	0.996	0.5 - 240
hexyl acetate	Aldrich, ≥98%	56	61, 69	0.95	+0.10	0.993	0.5-200
1-methyl-4-propan-2-ylidenecyclohexene (α -terpinolene)	Aldrich, ≥90%	121	93, 136	0.33	+0.12	0.966	0.5 - 220
(Z)-hex-3-enyl acetate	Aldrich, ≥98%	67	43, 82	1.68	+0.04	0.991	0.5 - 170
heptan-2-ol	Aldrich, ≥97%	45	55, 83	0.54	+0.55	0.988	3-2100
(E)-hex-2-enyl acetate	Bedoukian Research	67	100, 82	0.74	+0.17	0.991	0.5-170
hexan-1-ol	Sigma-Aldrich, ≥99%	56	55, 69	0.14	+0.09	0.978	3-1100
(Z)-hex-3-en-1-ol	Bedoukian Research	67	69, 82	0.04	+0.24	0.977	3-900
(<i>E</i>)-hex-2-en-1-ol	Compagnie Parento, Inc.	57	67, 82	0.05	+0.13	0.971	1-1500
6-methyl-2-(oxiran-2-yl)hept-5-en-2-ol (linalool oxide)	Fluka, ≥97%	59	94, 111	0.09	+0.29	0.988	1-2000
oct-1-en-3-ol	Aldrich, ≥98%	57	85, 72	1.10	+0.15	0.987	0.5 - 350
heptan-1-ol	Eastman Chemical	70	56, 55	0.55	+0.02	0.988	0.5 - 130
6-methylhept-5-en-2-ol	Aldrich, 99%	95	110, 128	0.69	+0.28	0.997	0.5 - 150
(2E,4E)-hepta-2,4-dienal	Fluka, ≥97%	81	110, 53	1.11	+0.51	0.970	0.5 - 250
2,6,6,10-tetramethyl-1-oxaspiro[4.5]dec-9-ene (theaspirane)	Aldrich, ≥85%	138	82, 96	2.25	-0.21	0.994	0.5-400
^c 1-(2-hydroxy-5-methylphenyl)ethanone	Aldrich, 98%	135	150, 107				
3,7-dimethylocta-1,6-dien-3-ol (linalool)	Aldrich, ≥97%	71	93, 121	0.23	+0.17	0.997	5-4140
octan-1-ol	Eastman Chemical	56	84, 70	0.22	+0.65	0.998	2-780
undecan-2-one	Aldrich, 99%	58	43, 59	0.53	-0.12	0.998	0.5 - 240
4-methyl-1-propan-2-ylcyclohex-3-en-1-ol (4-terpineol)	TCI Japan	71	154, 111	0.50	-0.07	1.000	0.5-440
(1R,5R)-2,7,7-trimethylbicyclo[3.1.1]hept-2-en-4-one (verbenone)	Aldrich, 94%	107	135, 150	0.08	+0.05	0.995	0.5-200
(2S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (borneol)	Aldrich, 97%	95	110, 139	0.94	+0.03	0.995	0.5-100
2-(4-methyl-1-cyclohex-3-enyl) propan-2-ol (α-terpineol)	K&K Lab, NY	59	93, 136	0.15	+0.18	0.999	2-1300
2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one (carvone)	Aldrich, ≥97%	82	93, 108	0.55	+0.01	1.000	0.5-280
methyl 2-hydroxybenzoate (methyl salicylate)	Lancaster, 98%	120	92, 152	0.75	-0.13	1.000	1-650
3,7-dimethyloct-6-en-1-ol (citronellol)	Aldrich	69	82, 95	0.22	-0.05	0.999	0.5-230
3,7-dimethylocta-2,6-dien-1-ol (nerol)	Sigma, ∼98%	69	121, 93	0.38	+0.23	0.971	0.5-200
(E)-1-(2,6,6-trimethyl-1-cyclohexa-1,3-dienyl)but-2-en-1-one	Firmenich	121	105, 190	1.16	-0.42	0.997	0.5-250
$(trans-\beta-damascenone)$	ALL: 1 000/	405	70.04	0.07	0.40	0.004	4 500
2-(7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)ethanol (nopol)	Aldrich, 98%	105	79, 91	0.97	-0.42	0.994	1-500
(3 <i>E</i>)-4-(2,6,6-trimethylcyclohex-2-en-1-yl)but-3-en-2-one (α -ionone)	Fluka, 75—90%	121	93, 136	0.93	-0.22	1.000	1-850
hexanoic acid	Aldrich, ≥99.5%	60	87, 73	0.01	+0.18	0.997	10-10500
3, 7-dimethylocta-2,6-dien-1-ol (geraniol)	Aldrich, 98%	69	123, 93	0.50	+0.27	0.999	1-1020
(3 <i>E</i>)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-one (β -ionone)	Aldrich, ≥97%	177	135, 192	1.78	-0.19	0.998	1-1050
4-phenylbutan-2-ol	Lancaster, 98%	117	91, 132	0.12	+0.33	0.996	1-1120
(4-prop-1-en-2-yl-1-cyclohexenyl)methanol (perilla alcohol)	Aldrich, 96%	79	121, 93	0.10	+0.04	0.999	1-460
octanoic acid	Aldrich	60	73, 101	0.08	+0.15	0.989	5-3800
5-propyloxolan-2-one ^c (γ -heptalactone)	Aldrich, ≥ 98%	85	56, 110	0.10	0.00	0.000	0 040
4-methoxy-2,5-dimethylfuran-3-one (mesifurane)	Aldrich, ≥97%	142	55, 71	0.18	-0.03	0.998	2-240
5-butyloxolan-2-one (γ-octalactone)	Pfaltz & Bauer Inc.	85	100, 57	4.61	-0.30	0.999	0.5—190
6-propyloxan-2-one (δ -octalactone)	Lancaster, 98%	99 125	71, 55	0.54	+0.03	0.999	0.5-220
4-methyl-2-propan-2-ylphenol ^c (isothymol)	TCI American, 99%	135	91, 150	0.10	. 0.07	0.005	1 500
(4-propan-2-ylphenyl)methanol (cumic alcohol)	Aldrich, 97%	135	150, 105	0.12	+0.07	0.995	1-500
5-hexyloxolan-2-one (γ-decalactone)	Aldrich, ≥98%	85 164	128, 55	0.68	+0.19	0.995	0.5-310
4-allyl-2-methoxyphenol (eugenol)	Aldrich, ≥ 98%	164	149, 131	0.21	+0.06	0.997	1-470
6-pentyloxan-2-one (δ -decalactone)	Aldrich, ≥98%	99	71, 114	0.16	+0.41	0.981	2-2560
3-phenylprop-2-en-1-ol (cinnamyl alcohol)	TCI American, 97%	92	134, 115	0.008	+0.02	0.976	2-1230
2-methoxy-4-(prop-1-en-1-yl)phenol (isoeugenol)	Aldrich, 98%	164	149, 103	0.21	-0.06	0.996	0.5-330
6-heptyloxan-2-one (δ -dodecalactone)	TCI Japan	99	71, 114	0.48	-0.005	1.000	0.5-210

 $[^]a$ Values for the slope in the equation $R_{\text{TC}}/R_{\text{IS}}$ = slope($C_{\text{TC}}/C_{\text{IS}}$) + intercept, where R_{TC} is the MS response of the target compound, R_{IS} is the MS response of the internal standard, C_{TC} is the concentration of the target compound, and C_{IS} is the concentration of the internal standard. b Actual concentration range for standard calibration curve. c Internal standard.

Chiral Analysis. Volatile compounds in berry samples were isolated using the same procedures as described previously (both SBSE and SPE methods); however, internal standards were not added. Separation was achieved using a Cyclosil B column (30 m \times 0.25 mm i.d., 0.25 μm film thickness, Agilent). The oven temperature was programmed at 40 °C for a

2 min hold and then increased to 230 °C at a rate of 5 °C/min, with a 5 min hold at the final temperature. Authentic standards (*R*)-limonene (Sigma-Aldrich, Milwaukee, WI), (*S*)-limonene (Aldrich, Milwaukee, WI), (*R*)-linalool (Fluka, Buchs, Switzerland), (*R*)-2-heptanol (Aldrich), and (*R*)-terpinen-4-ol (Aldrich) were used for identification. All other isomeric

Table 2. Chemical Standards and MS Fragments Used for Quantitative Analysis by SPE Method

chemical	source, purity	quantify ions	qualify ions	slope ^a	intercept	R^2	range ^b (μg/L)
1-(2-hydroxy-5-methylphenyl)ethanone ^c	Aldrich, 98%	135	150, 107				
butanoic acid	Aldrich, ≥99%	60	73, 55	0.39	-0.19	0.995	70-93000
2-methylbutanoic acid	Aldrich	60	45, 87	0.50	-0.20	0.997	70-95160
phenylmethanol	Sigma-Aldrich, 99.8%	108	107, 77	0.51	-0.09	0.992	40-49430
2-phenylethanol	Sigma-Aldrich, ≥99%	91	92, 122	1.20	-0.006	0.993	40-47530
4-hydroxy-2,5-dimethylfuran-3-one (Furaneol)	Fluka, ≥99%	128	57, 85	1.79	-0.30	0.975	230-105000

^a Values for the slope in the equation $R_{\text{TC}}/R_{\text{IS}} = \text{slope}(C_{\text{TC}}/C_{\text{IS}}) + \text{intercept}$, where R_{TC} is the MS response of the target compound, R_{IS} is the MS response of the internal standard. ^b Actual concentration range for standard calibration curve. ^c Internal standard.

Table 3. °Brix, Titratable Acidity (TA), and Soluble Solids Content to TA Ratio for the Genotypes Representing 'Marion' Blackberry's Pedigree

		2007			2008	
	°Brix	TA	ratio	°Brix	TA	ratio
Marion	14.0	1.7	8.2	11.4	1.2	9.5
Chehalem	15.6	3.2	4.8	14.6	3.1	4.8
Santiam	15.6	1.7	9.2	17.0	1.4	11.9
Himalaya	14.0	1.0	13.6	14.4	1.0	14.8
Olallie	13.8	1.8	7.5	16.8	1.7	9.7
Logan	20.2	3.1	6.4	14.2	2.2	6.4
Meeker, red raspberry	13.8	1.3	10.7	16.2	1.8	8.9

compounds were tentatively identified on the basis of literature reports using a similar column and compounds identified in fruits. The isomeric ratio was determined using the relative total mass ion abundance of the compound.

Statistical Analysis. The S-PLUS version 7.0 software (Insightful Corp., Seattle, WA) was used to test the statistical variances of volatile constituents from two growing seasons. Triplicate analysis was performed for each sample from each growing season, and a *t* test was conducted to test the growing season variance of each volatile compound; ANOVA (analysis of variance) was applied for the test of the variance of each volatile compound among different cultivars.

RESULTS AND DISCUSSION

°Brix and Titratable Acidity. In this study, seven cultivars that reflected genotypes in 'Marion's pedigree in two growing seasons were collected: 'Marion', 'Chehalem', 'Santiam', 'Himalaya', 'Olallie' blackberry; 'Logan', a raspberry—blackberry hybrid; and 'Meeker' red raspberry. 'Brix, titratable acidity, and the ratio of soluble solids content to titratable acidity are presented in Table 3. Although seasonal variation was observed for some cultivars, the soluble solids content to titratable acidity ratio was relatively consistent for each individual cultivar harvested in two years, suggesting the fruit maturity was similar in both years because the ratio of soluble solids content to titratable acidity is a good indicator of fruit maturity (9).

Volatile Distribution in 'Marion' Pedigree. The volatile compounds in 'Marion's pedigree were very diverse, and it was challenging to analyze all volatile compounds using a single method. In this study, SBSE-GC-MS and SPE-microvial insert thermal desorption GC-MS were used to analyze a wide range of compounds. Approximately 80 compounds in 'Marion's pedigree (Table 4) were quantified.

Overall, the most abundant volatile compounds in the genotypes were lipid derivatives, followed by terpenes. A large amount of norisoprenoids and shikimic acid derivatives also existed. Two furanone compounds including mesifurane and Furaneol were quantified. However, the compounds in each category did not distribute evenly among the cultivars. Among the compounds analyzed, about half of them presented significant seasonal variations (p < 0.01). Compounds from shikimic acid derivatives

and lipid derivatives had higher seasonal variations than terpenes, norisoprenoids, and furanones.

Volatile patterns varied greatly in the genotypes in 'Marion's pedigree. The volatile pattern in raspberry was completely different from that of the blackberries. 'Meeker' predominated by norisoprenoids, lactones, and acids and contained only small amounts of other volatiles, which was in agreement with the literature (10,11). 'Logan' and 'Olallie', which have red raspberry parents in their ancestry, had a dominance of norisoprenoids, as did 'Meeker' red raspberry, but at much lower concentration. The concentration of norisoprenoids in blackberry genotypes was significantly lower.

Wild 'Himalaya' blackberry was dominated by terpenes and furanones, but had only trace levels of norisoprenoids and esters. The predominant volatiles in 'Santiam' were terpenes. 'Chehalem', a selection from the progenies of 'Santiam' × 'Himalaya', had characteristics from both of its parents. 'Chehalem' had a dominant volatile composition for terpenes, but the concentration was much lower than in 'Santiam'. 'Chehalem' contained a small amount of alcohols, carbonyls, and furanones, similar to its parent 'Santiam'; it also had trace levels of norisoprenoids and esters, similar to its parent 'Himalaya'. 'Marion', a selection from 'Chehalem' and 'Olallie', contained almost all of the volatile compounds in its pedigree at moderate amounts. It had a very balanced volatile pattern as reported previously (12).

(i) Terpenes. Terpenes have very diverse flavor, ranging from turpentine and resinous impressions to citrus and flowery notes. 'Marion' had almost the complete terpene spectrum; however, the concentration of most terpene compounds was very low. All other cultivars contained much higher terpene levels, especially 'Olallie' and 'Logan'. 'Olallie' and 'Logan' had high concentrations of myrcene, limonene, α -terpinolene, linalool, α -terpineol, nerol, and geraniol. The terpene profile in raspberry was completely different from that of blackberries. Only two-thirds of terpenes were identified in 'Meeker' raspberry; the major compounds were α -phellandrene, α -terpinene, linalool, 4-terpineol, α -terpineol, verbenone, myrtenol, nerol, and geraniol, in agreement with a previous study (13).

Linalool was one of the most important aroma compounds in blackberries, contributing to a floral note (12, 14, 15). 'Logan' had a very high content of linalool, as did its progeny 'Olallie'. Both 'Santiam' and 'Himalaya' had relatively low linalool contents; their progeny 'Chehalem' had only half the linalool compared with its parents. It is interesting to note that a low content of linalool in its maternal parent, 'Chehalem', and a high content of linalool in its paternal parent, 'Olallie', gave 'Marion' an intermediate level of linalool. The pattern suggested that linalool could be inherited in an additive fashion in blackberry. Linalool was reported to be highly heritable in strawberries (5). Similarly, a high content of *p*-cymen-8-ol in 'Himalaya' and a low content in 'Santiam' resulted in an intermediate level in 'Chehalem'. However, the inheritance pattern was not obvious

1341 (Z)-rose coxide	RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)
1985 cyclesilunderine 2007 9.5 ± 0.20A 2014 ± 0.10B 10		terpenes								
1899 myrame	1165	a phollandrona								
1169 myromen	1105	a-prielianarene								
180	1169	myrcene								
1180 o-berpienee 2007 8.5±0.28A 11.8±0.38A 30±1±NA 48±±NA 15±2mB 25±±NA 30±0.08D 3±4±NA 1202 Imronene 2007 ND ND ND 10±1±NA ND 85±3mB 203±1±NA 30±0.01mB 3±4±NA ND 20±0.00mB ND 3±0.01mB ND 10±1±NA ND 85±3mB 20±10.02M 3±4±NA ND 20±0.00mB ND 3±0.01mB ND 25±5MB 25±±NA 30±±NA ND ND 10±0.01mB 120±0.00mB 120±0.01mB ND 25±5MB 25±±NA 30±±NA ND ND 10±0.01mB 120±0.01mB ND 10±0.01mB 120±0.01mB ND 10±0.01mB 120±0.00mB 120±0.01mB ND 10±0.01mB ND ND 11±0.01mB 3±±0.01mB ND	1100	myrocho								
2008 80±01ah 33±0.1ab 58±4c8 85±1c8 111±0.7ah 38.0±0.1bb 3±4cbh ND 10±1ah ND 88±3c8 233±1ab ND 2008 ND 3±0.0ab 23±1c8 ND 22±5ch 26±0.2bb 23±1cb ND 22±5ch 25±0.5bc 68±2d 38±2ab ND 22±5ch ND ND ND ND ND ND ND N	1180	α-terpinene								
1202 Immome 2007 ND	1100	a torpinono								
2008 ND	1202	limonene								
1276 clarg/pinolene										
2008 3.0 ± 0.1 a	1276	α-terpinolene								
2008								32 ± 1 bA		0.6 ± 0.001 aA
2008	1341	(Z)-rose oxide b				$12.9 \pm 0.7 \mathrm{eB}$		$2.0 \pm 0.4 \text{bcB}$		
2008 ND			2008	1.4 ± 0.1 bcA	1.8 ± 0.1 cA	$10.6 \pm 0.7 \mathrm{eA}$	ND		$3.5 \pm 0.1 \mathrm{dA}$	ND
1425 Z -Imalool oxide	1354	(E)-rose oxide b	2007	ND	ND	$4.9 \pm 0.1 \text{bA}$	ND	ND	ND	ND
1451 (E-linabol oxide				ND	ND	$4.8 \pm 0.1 \text{bA}$	ND	ND	ND	ND
1451 (E-linabol oxide	1425	(Z)-linalool oxide	2007	$4.1 \pm 0.2 \mathrm{cB}$	$2.0\pm0.5 \mathrm{bB}$	$2.3 \pm 0.2 \text{bB}$		$5.9 \pm 0.7 \mathrm{eB}$	$5.1\pm0.9\mathrm{dB}$	ND
2008 18±0.1cA 0.76±0.05bA 1.5±0.07cA 0.8±0.1chA 2.3±0.2dA 4.05±0.05cA ND 1522 linalool 2007 19±2.5bA 24±1aA 70±3aB 52±1aB 1797±3aB 1597±3aB 1590±38cA 70±2aB 1577 4-terpineol 2008 194±3bA 23±1aA 70±7aA 43±2aA 800±30cA 1790±40.dB 42±1aA			2008		$1.3 \pm 0.1 \text{bA}$	-aA	1.8 ± 0.1 cA	$2.8\pm0.2 \mathrm{dA}$	$4.6 \pm 0.1 \mathrm{eA}$	ND
1532 Inisolo 2007 190 ± 256A 24 ± 1aA 70 ± 2aA 52 ± 1aB 1797 ± 38 dB 1500 ± 386A 70 ± 2aB 1577 ± 4reprincel 2007 71 ± 0.1aB 16.5 ± 0.4bA 38 ± 1cA 201 ± 1cA 4.7 ± 0.7aB 12 ± 1bA 21 ± 1aA 22 ± 1aB 22 ± 1aA 22 ±	1451	(E)-linalool oxide	2007	1.8 ± 0.1 cA	$1.0 \pm 0.1 \mathrm{bA}$	$2.5\pm0.1\mathrm{dB}$	$0.8 \pm 0.1 \text{bA}$	$3.5\pm0.5 \mathrm{eB}$	$3.5\pm0.5 \mathrm{eA}$	ND
1532 Inialoo 2007 190 ±256A 24 ±1aA 70 ±2aA 52 ±1aB 1797±38 dB 1500±38cA 70 ±2aB 1507 ±4cpineol 2007 71±01aB 16.5±0.4bA 38 ±1cA 201±1dA 4.7±0.7cB 12±1bA 21±4±dB 2036 6.3±0.2abA 15.2±0.4bA 6.5±1dB 190 ±10eA 3.5±0.01aA 1.0±0.3abB 50.6±0.3cA 7.0±2aB 2.0±1aA 2.0±1dA 4.7±0.7cB 12±1bA 2.1±4±dB 7.0±2dB 2.0±1aA 2.0±1dA 4.7±0.7cB 12±1bA 2.0±4±dB 7.0±1dB 7.0±1d										ND
2008 184±3hA 23±1aA 70±7aA 43±2aA 800±300A 1790±40 dB 42±1aA 21577 4-terpineol 2007 7.1±0.1aB 16.5±0.4bA 38±1cA 201±1cA 47±0.7aB 12±1bA 214±4cB 214±1aA 214±4cB 200±1aB 21±1bA 214±4cB 210±1aB 21±1bA 20±10.05aB 3.5±0.05aB	1532	linalool								
1577 4-terpineol 2007 7.1 ± 0.1 aB 16.5 ± 0.4 bA 38 ± 1 cA 201 ± 1 dA 4.7 ± 0.7 aB 12 ± 1 bA 214 ± 4eB 2008 6.3 ± 0.2 aA 15.2 ± 0.4 bA 65 ± 1 dB 190 ± 100 A 3.5 ± 0.0 1 aA 1.4 ± 0.1 aB 50.6 ± 0.3 cA										
2006 6.3 ± 0.2 aba 1.5 ± 0.4 bba 6.5 ± 1 dba 1.0 ± 1 bba 4.2 ± 0.1 tba 4.2 ± 0.1 tba 7.5 ± 1 bba 1.0 ± 1 bba 4.2 ± 0.1 tba 1.4 ± 0.2 aba 5.0 ± 0.	1577	4-terpineol								
1581 1-p-mentha-9-ai ^P 2007 6.0±0.2eB 3.4±0.5cB 1.1±0.1bA 1.1±0.1bA 4.2±0.1cB 7±1fB ND 1672 1.8-menthadien-4-oi ^P 2007 1.8±0.1bA 5.7±0.5cB 20±1eA 1.2±1dA ND ND ND 1677 verbenone 2007 1.8±0.1bA 5.7±0.5cB 20±1eA 12±1dA ND ND ND 1677 verbenone 2007 1.4±0.2aA ND 2.5±0.01aA 1.3±0.06aA ND ND ND 1682 borneol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.5bC 4.3±0.1bA 1.3±0.06aA ND ND ND 1682 borneol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.5bC 4.3±0.1bA ND ND 1.5±0.4bA 1682 borneol 2007 4.2±0.1aB 6.7±0.2aB 7.6±0.5bC 51±9aA 10.1±0.4cA 3.4±2dA 5.2±0.1aB 1684 α-terpineol 2007 54±5aB 91±5aB 176±10bA 430±10b 430±10b 430±10b 430±10b 430±10b 430±10b 1769 circonellol 2007 6.8±0.1aB 3.9±0.1cA 3.9±0.1cA 4.3±0.1dA 27.8±0.2aA ND ND 1.5±0.01b 1769 circonellol 2007 6.8±0.1aB 3.9±0.1cA 4.3±0.1dA 27.8±0.2aA ND ND 1.5±0.01b 1769 2007 2.3±0.1aA 3.9±0.1cA 4.3±0.1dA 27.8±0.2aA ND ND 1.5±0.01b 1769 circonellol 2007 6.8±0.1aB 3.9±0.1cA 4.3±0.1dA 27.8±0.2aA ND ND 1.5±0.01b 1769 2007 1.9±0.1aA 5.7±0.4abA 2.5±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1dB 1764 myrtenoiº 2007 1.9±0.1aA 5.7±0.4abA 2.5±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1dB 1870 nerol 2007 2.2±0.1aA 1.6±1bB 2.8±1cA 8.6±6.B 1.3±0.01aA 2.2±0.03aA 3.2±0.0aB 3.2±0.0aB 1881 nerol 2007 4.2±0.2aA 4.4±0.3aA 3.4±1dB 6.8±0.4aA 1.3±0.01aA 2.2±0.03aB 3.2±0.0aB 3.2±0.										
1672 1,8-menthadien-4-ol 2007 18±0.1 bh 5,7±0.568 20±1eA 12±1dA ND ND ND ND ND ND ND N	1581	1-p-mentha-9-al ^b		$6.0 \pm 0.2 eB$		1.1 ± 0.1 bA				
1672 1,8-menthadien-4-ol ⁰ 2007 1.8±0.10hA 5.7±0.5cB 20±1eA 12±1dA ND ND ND ND 1677 verbenone 2007 1.4±0.2aA ND 2.5±0.1aA 1.3±0.0bA ND ND ND 1680 1.5±0.0bA 4.7±0.4cA 23±1eA 1.3±0.0bA ND ND ND 1680 1.5±0.0bA 4.4±0.1dB ND 3.0±0.6cA 1.4±0.1bA ND ND ND 162±0.4eA ND 3.0±0.6cA 1.4±0.1bA ND ND ND 162±0.4eA ND 3.0±0.6cA 1.4±0.1bA ND ND ND 162±0.4eA ND ND 1.5±0.0bA 8.6±0.3bA 8.6±9.8b 1.6±1eB 33±1dA 8.7±0.3bA 1684 α-terpineol 2007 54±5aB 91±5aB 176±10bA 430±10cB 570±30dB 1100±50eA 176±30bA 1766 carvone 2007 2.3±0.1bA 3.9±0.1cA 4.3±0.1dA 2.78±0.2eA ND ND 1.5±0.01bA 1769 citronellol 2007 6.8±0.1aB 3.9±0.1cA 4.3±0.1dA 2.78±0.2eA ND ND 1.5±0.01bA 1769 citronellol 2007 6.8±0.1aB 3.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1bB 1.27±0.3bA 9.1±0.1aB 1794 myrtenol ⁰ 2007 1.9±0.1aA 5.5±0.4abA 30±1.0b 41±4eB 4.1±0.5aB 6.5±0.3bA 37±1.0b 1810 nopol 2007 2.2±0.1aA 16±1.bB 28±1.cA 86±6.0b 3.3±0.01aA 2.2±0.05aA 3.2±0.4aA 1810 norol 2007 4.2±0.2aA 4.4±0.2aA 3.4±1.0b 5.7±0.6aA 3.4±0.0b 1.6±0.0b 1.0±0.0b 3.2±0.0ca 3.2±0.4aA 1810 norol 2007 4.2±0.2aA 4.4±0.2aA 3.4±1.0b 6.8±0.4aA 1.0±0.0b 1.0										
1677 verbenone 2007 1.4±0.06bA 4.7±0.4cA 23±1eA 13±1dA ND ND ND 81±4bB 2008 4.4±0.1dB ND 3.0±0.6cA 1.4±0.1bA ND ND ND 15.2±0.4eA 3.0±0.6cA 1.4±0.1bA ND ND ND 1.5±0.1bA 3.0±0.6cA 1.4±0.1bA ND ND ND 1.5±0.1bA ND ND ND ND ND ND ND N	1672	1.8-menthadien-4-ol ^b								
1677 verbenone 2007 1.4±0.2aA ND 2.5±0.1aA 1.3±0.06aA ND ND 81±4eB 1682 borneol 2007 4.2±0.1aB 6.7±0.2abB 7.6±0.3bA 68±3eB 16±1cB 33±1dA 8.7±0.3bA 1684 α-lerpineol 2007 4.2±0.1aB 6.7±0.2abB 7.6±0.5bcA 51±3eA 10.1±0.4cA 34±2dA 5.2±0.1abA 1684 α-lerpineol 2007 54±5eB 91±5aB 176±10bA 430±10cB 57±0.3bB 43±0.0bB 43±0.0bB 1706 carvone 2007 2.3±0.1bA 3.9±0.1cA 4.3±0.1dA 27.8±0.2cB 4.3±0.0bB 14±1aA 1706 carvone 2007 2.3±0.1bA 3.9±0.1cA 4.3±0.1dA 27.8±0.2cB 4.7±0.0bB 10.0±0.0bB 17.6±0.0bB 1709 citronellol 2007 6.8±0.1aB 9.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1aB 12.7±0.3bA 9.1±0.1aB 1709 citronellol 2007 6.8±0.1aB 9.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1aB 12.7±0.3bA 9.1±0.1aB 1709 citronellol 2007 6.8±0.1aB 9.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1aB 12.7±0.3bA 9.1±0.1aB 1709 citronellol 2007 1.9±0.1aA 5.7±0.4abA 2.5±1cA 51±4cB 4.1±0.5aB 6.5±0.3bA 37±1dB 1709 citronellol 2007 1.9±0.1aA 5.7±0.4abA 2.5±1cA 51±4cB 4.1±0.5aB 6.5±0.3bA 37±1dB 1709 citronellol 2007 1.9±0.1aA 5.7±0.4abA 2.5±1cA 51±4cB 4.1±0.5aB 6.5±0.3bA 37±1dB 1800 nerol 2007 2.2±0.1aA 6±1bB 28±1cA 28±6 dB 3.±0.01aA 2.5±0.03aA 3.2±0.4aA 1810 nerol 2007 2.2±0.1aA 6±1bB 28±1cA 28±6 dB 3.±0.01aA 2.5±0.03aA 3.2±0.4aA 1810 nerol 2007 4.2±0.2aA 4.7±0.2aA 34±1dB 6.8±0.4aA 1.4±0.8bA 116±1cB 19.0±0.1cA 1821 isogeraniol 2007 1.9±0.2aA 4.7±0.2aA 34±1dB 6.8±0.4aA 1.0±0.8bA 116±1cB 19.0±0.1cA 1820 p-cymen-8-0f 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 1809 p-cymen-8-0f 2007 1.9±0.2aA 4.0±0.2aA 34±0.1ab 3.0±0.2abA 4.0±0.2aA 4.0±0.2aA 4.0±0.2aB		.,.								
1862 borneol 2008 4.4 ± 0.1 dB ND 3.0 ± 0.6cA 1.4 ± 0.1 bA ND ND 15.2 ± 0.4cA 1.6cB 2008 2.8 ± 0.1aA 3.9 ± 0.2abA 7.6 ± 0.5bCA 51 ± 3aA 10.1 ± 0.4cA 3.4 ± 2dA 5.2 ± 0.1ab/	1677	verbenone								
1682 borneol 2007 4.2±0.1aB 6.7±0.2abB 7.6±0.3bA 68±3eB 16±1cB 33±1dA 8.7±0.3bB 1664 α-terpineol 2007 54±5aB 91±5aB 176±10bA 430±10cB 570±30dB 1100±50eA 176±3bB 176±10bA 2008 35±1aA 35±2aA 180±10bA 250±15cA 368±9dA 1330±50eB 14±1aA 176±3bB 176±0bB 2008 35±1aA 35±2aA 180±10bA 250±15cA 368±9dA 1330±50eB 14±1aA 1450±0eB 14±1aA 14±0±0eB 16.6±0±0aB 15±0±0aB										
2008 2.8 ± 0.1 aA 3.9 ± 0.2 aB 7.6 ± 0.5 bC 51 ± 3.9 A 10.1 ± 0.4 cA 3.4 ± 2.0 A 5.2 ± 0.1 ab/ 176 ± 3.0 B 100 ± 50e A 176 ± 3.0 B 17	1682	borneol								
1684 α-terpineol 2007 54 ± 5aB 91 ± 5aB 176 ± 10bA 430 ± 10cB 570 ± 30 dB 1100 ± 50eA 176 ± 30B 1706 carvone 2007 2.3 ± 0.1bA 3.9 ± 0.1cA 4.3 ± 0.1dA 27.8 ± 0.2eA ND ND 4.3 ± 0.01dA 1.5 ± 0.01bA 1.5 ± 0.01										5.2 ± 0.1 abA
1706 carvone 2008 35±1aA 35±2aA 180±10bA 250±15cA 368±9dA 1330±50eB 14±1aA 43±0.01dC 278±0.2eA ND ND ND 4.3±0.01dD 1706 278±0.2eA ND ND ND 1.5±0.01dD 1.5±0	1684	α-terpineol								
1706 Carvone 2007 2.3 ± 0.1bA 3.3 ± 0.1cA 4.3 ± 0.1dA 27.8 ± 0.2eA ND ND 4.3 ± 0.01dB 1769 citronellol 2007 6.8 ± 0.1aB 9.2 ± 0.3abB 61 ± 1cA 10.4 ± 0.6bB 10.6 ± 0.1bB 12.7 ± 0.3bA 9.1 ± 0.1aB 1794 myrtenol ⁰ 2007 1.9 ± 0.1aA 5.7 ± 0.4abA 2.5 ± 1cA 5.1 ± 4eB 4.1 ± 0.5aB 6.5 ± 0.3bA 37.1 ± 1dB 1.5 ± 0.01bA 2.5 ± 0.1aA 5.3 ± 0.4abA 3.0 ± 1dB 4.1 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 15 ± 1cA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 15 ± 1cA 2.5 ± 0.1aA 2.5 ± 0.1aA 2.5 ± 0.1aA 2.5 ± 0.4abA 3.0 ± 1dB 4.1 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 4.1 ± 0.5aB 6.5 ± 0.3bA 3.7 ± 1dB 4.1 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 4.1 ± 0.5aB 6.5 ± 0.3bA 3.7 ± 1dB 4.1 ± 4eA 4.1 ± 0.5aB 6.5 ± 0.3bA 3.7 ± 1dB 4.1 ± 4eA 4.1 ± 0.5aB 6.5 ± 0.3bA 3.7 ± 1dB 4.1 ± 4eA 4.2 ± 0.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 4.1 ± 0.5aB 6.5 ± 0.3bA 3.2 ± 0.4aA 4.1 ± 0.5aB 4.1 ± 0.5aB 4.1 ± 0.5aB 6.5 ± 0.3bA 3.7 ± 1dB 4.1 ± 4eA 4.1 ± 0.5aB 4.1 ±										
1769 citronellol 2008 4.7 ± 0.1 cB 5.8 ± 0.1 dB 5.9 ± 0.2 cB 2.7 ± 1eA ND ND 1.5 ± 0.0 1bβ 1.6 ± 0.0 1bβ	1706	carvone								
1769 citronellol 2007 6.8±0.1aB 9.2±0.3abB 61±1cA 10.4±0.6bB 10.6±0.1bB 12.7±0.3bA 9.1±0.1aB 2008 5.8±0.1aA 6.1±0.1aA 97±4cB 8.5±0.2aA 7.2±0.2aA 30±0.01bB 6±1aA 37±1dB 2008 1.5±0.1aA 5.7±0.4abA 25±1cA 51±4eB 4.1±0.5aB 6.5±0.3bA 37±1dB 2008 1.5±0.1aA 5.3±0.4abA 30±1dB 41±4eA 2.5±0.1aA 7.0±0.5bA 15±1cA 1801 nopol 2007 2.2±0.1aA 16±1bB 28±1cA 86±6dB 1.3±0.01aA 2.5±0.03aA 3.2±0.4aA 2008 1.8±0.2aA 13.9±0.8bA 34±1cB 57±5dA 1.3±0.01aA 2.5±0.03aA 3.2±0.4aA 1810 nerol 2007 4.2±0.2aA 4.4±0.3aA 19±1bA 7.5±0.6aA 27.8±0.4cB 57±2eA 33±1dB 2008 4.2±0.2aA 4.4±0.3aA 19±1bA 7.5±0.6aA 27.8±0.4cB 57±2eA 33±1dB 6.8±0.4aA 1.0±0.8bA 116±1eB 19.0±0.1cA 1821 isogeraniol ^c 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 1821 isogeraniol ^c 2007 19±2aA 1000±70cA 104±9bA 1710±80dA ND									ND	
1794 myrtenol ^b 2008 5.8 ± 0.1aA 6.1 ± 0.1aA 97 ± 4cB 8.5 ± 0.2aA 7.2 ± 0.2aA 30 ± 0.01bB 6 ± 1aA 1794 myrtenol ^b 2007 1.9 ± 0.1aA 5.7 ± 0.4abA 25 ± 1cA 40B 4.1 ± 0.5aB 6.5 ± 0.3aA 37 ± 1 dB 2008 1.5 ± 0.1aA 5.3 ± 0.4abA 30 ± 1 dB 41 ± 4cA 2.5 ± 0.1aA 7.0 ± 0.5bA 37 ± 1 dB 1801 nopol 2007 2.2 ± 0.1aA 16 ± 1bB 28 ± 1cA 86 ± 6 dB 1.3 ± 0.01aA 2.5 ± 0.03aA 3.2 ± 0.4aA 2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 50A 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 1810 nerol 2007 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2cA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0	1769	citronellol								
1794 myrtenol ⁶ 2007 1.9 ± 0.1aA 5.7 ± 0.4abA 25 ± 1cA 51 ± 4eB 4.1 ± 0.5aB 6.5 ± 0.3bA 37 ± 1 dB 2008 1.5 ± 0.1aA 5.3 ± 0.4abA 30 ± 1 dB 41 ± 4eA 2.5 ± 0.1aA 7.0 ± 0.5bA 15 ± 1cA 2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 3.2				$5.8 \pm 0.1 aA$						
1801 nopol 2007 2.2±0.1aA 5.3±0.4abA 30±1 dB 41±4eA 2.5±0.1aA 7.0±0.5bA 15±1cA 2008 1.8±0.2aA 13.9±0.8bA 34±1cB 57±5dA 1.3±0.01aA 2.5±0.03aA 3.2±0.4aA 2.008 1.8±0.2aA 13.9±0.8bA 34±1cB 57±5dA 1.3±0.01aA 2.5±0.03aB 3.2±0.4aA 2.008 4.2±0.4aA 4.7±0.2aA 34±1dB 6.8±0.4aA 14.0±0.8bA 116±1eB 19.0±0.1cA 1821 isogeraniol ^o 2007 0.6±0.02aA 2.7±0.1abA 118±4cA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 4.0±0.8bA 116±1eB 19.0±0.1cA 4.0±0.8bA 116±1eB 19.0±0.1cA 4.0±0.8bA 4.2±0.6aB 5.7±0.6aB 3.0±0.2abA 4.6±0.4bA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 4.0±0.1abA 1.8±0.1abB 3.0±0.2abA 4.6±0.4bA 4.0±0.1abA 4.0±0.1abA 4.2±0.6aB 5.7±0.5aB 5.0±0.5aB 5.0±0.5	1794	mvrtenol ^b								
1801 nopol 2007 2.2 ± 0.1aA 16 ± 1bB 28 ± 1cA 86 ± 6 dB 1.3 ± 0.01aA 2.5 ± 0.03aA 3.2 ± 0.4aA 2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 2007 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol ^c 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.0 ± 0.1abA 4.2 ± 0.6aB 5.7 ± 0.5aB 4.2 ± 0.6aB 4.2 ± 0.6aB 5.7 ± 0.5aB 4.2 ± 0.6aB 4.2 ± 0.6aB 5.7 ± 0.5aB 4.2 ± 0.6aB 4.2 ± 0.6aB 5.7 ± 0.5aB 4.2 ± 0.6aB 5.7 ± 0.5aB 4.2 ± 0.6aB 4.2 ±		,								
2008 1.8 ± 0.2aA 13.9 ± 0.8bA 34 ± 1cB 57 ± 5dA 1.3 ± 0.01aA 3.2 ± 0.06aB 3.2 ± 0.4aA 3.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2cA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 1821 isogeraniol° 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 4.6 ± 0.4bA 2008 0.6 ± 0.06aA 3.4 ± 0.1aB 214 ± 8bB 6.1 ± 0.1aB 1.3 ± 0.08aA 4.2 ± 0.6aB 5.7 ± 0.5aB 5.7 ± 0.5aB 3.0 ± 0.2abA 4.6 ± 0.4bA 3.2 ± 0.6aB 3.2 ± 0.0abA 4.6 ± 0.4bA 3.2 ± 0.0abA 3.2 ± 0.0abA 4.6 ± 0.4bA 3.2 ± 0.0abA 4.2 ± 0.6aB 5.7 ± 0.5aB 3.0 ± 0.0abA 3.2 ± 0.0abA 4.6 ± 0.0abA 4.2 ± 0.0abA 4.0abA 4.	1801	nopol								
1810 nerol 2007 4.2 ± 0.2aA 4.4 ± 0.3aA 19 ± 1bA 7.5 ± 0.6aA 27.8 ± 0.4cB 57 ± 2eA 33 ± 1 dB 2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA 10.2 ± 0.0cB 12.0 ± 0.1cA 12.0 ± 0.0cB 12.0 ± 0.1cA 12.0 ± 0.0cB										
2008 4.2 ± 0.4aA 4.7 ± 0.2aA 34 ± 1 dB 6.8 ± 0.4aA 14.0 ± 0.8bA 116 ± 1eB 19.0 ± 0.1cA	1810	nerol	2007							
1821 isogeraniol ^c 2007 0.6 ± 0.02aA 2.7 ± 0.1abA 118 ± 4cA 4.0 ± 0.1abA 1.8 ± 0.1abB 3.0 ± 0.2abA 4.6 ± 0.4bA 2008 0.6 ± 0.06aA 3.4 ± 0.1aB 214 ± 8bB 6.1 ± 0.1aB 1.3 ± 0.08aA 4.2 ± 0.6aB 5.7 ± 0.5aB 1859 p-cymen-8-ol ^c 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND										
2008 0.6 ± 0.06aA 3.4 ± 0.1aB 214 ± 8bB 6.1 ± 0.1aB 1.3 ± 0.08aA 4.2 ± 0.6aB 5.7 ± 0.5aB 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND	1821	isogeraniol ^c								
1859 p-cymen-8-ol° 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND ND ND ND ND ND ND N										
1859 p-cymen-8-ol° 2007 19 ± 2aA 1000 ± 70cA 104 ± 9bA 1710 ± 80dA ND ND ND ND ND ND ND N			2008	0.6 ± 0.06 aA	$3.4 \pm 0.1 aB$	$214\pm8 \mathrm{bB}$	$6.1 \pm 0.1 aB$	1.3 ± 0.08 aA	$4.2 \pm 0.6 \mathrm{aB}$	$5.7 \pm 0.5 \mathrm{aB}$
2008 13 ± 2aA 1300 ± 80cB 186 ± 9bB 1670 ± 90dA ND ND ND ND	1859	p-cymen-8-ol ^c								
1863 geraniol 2007 17.7 ± 0.3aB 39 ± 1bA 420 ± 14eA 132 ± 1cB 172 ± 1fB 260 ± 10dA 168 ± 5fA 2008 14 ± 1aA 41 ± 1bA 840 ± 25fB 118 ± 5cA 114 ± 1cA 425 ± 7eB 396 ± 1 dB 2012 perilla alcohol 2007 1.1 ± 0.04aB 1.8 ± 0.06aB 106 ± 6cA 239 ± 2 dB ND ND ND 13.9 ± 0.2bB 2008 0.6 ± 0.02aA 0.8 ± 0.07aA 122 ± 6bB 133 ± 6bA ND ND ND 0.6 ± 0.001a 27.7 − diene-1,6-diol ^d 2007 260 ± 60bcA 183 ± 5bA 290 ± 50cA 390 ± 9 dB 730 ± 80eB 160 ± 10bA ND 2008 510 ± 90 dB 170 ± 10bA 260 ± 70cA 240 ± 20bA 400 ± 40cdA 530 ± 50 dB ND 2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2bcA 16.7 ± 0.7cA 10.1 ± 0.01bA 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2eB ND 12.7 ± 0.2cA 35 ± 1fB 10.1 ± 0.01bA 2008 15 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 13.9 ± 0.05 dB 14 ± 2dA 4.8 ± 0.1bA 2008 15 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 6.1 ± 0.4cA 29 ± 1eB 4.6 ± 0.5bcA 1810 β-damascenone 2007 7.2 ± 0.001bA 7.1 ± 0.001bA ND ND ND ND 3.5 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.001cA ND 7.5 ± 0.001c										
2012 perilla alcohol 2008 $14 \pm 1aA$ $41 \pm 1bA$ $840 \pm 25fB$ $118 \pm 5cA$ $114 \pm 1cA$ $425 \pm 7eB$ $396 \pm 1 dB$ 2012 perilla alcohol 2007 $1.1 \pm 0.04aB$ $1.8 \pm 0.06aB$ $106 \pm 6cA$ $239 \pm 2 dB$ ND ND $13.9 \pm 0.2bB$ 2008 $0.6 \pm 0.02aA$ $0.8 \pm 0.07aA$ $122 \pm 6bB$ $133 \pm 6bA$ ND ND $0.6 \pm 0.001a$ 2310 (E)-2,6-dimethylocta-2,7-diene-1,6-diol ^d 2008 $510 \pm 90 dB$ $170 \pm 10bA$ $260 \pm 70cA$ $240 \pm 20bA$ $400 \pm 40cdA$ $530 \pm 50 dB$ ND 2008 $510 \pm 90 dB$ $170 \pm 10bA$ $260 \pm 70cA$ $240 \pm 20bA$ $400 \pm 40cdA$ 40	1863	geraniol		$17.7 \pm 0.3 aB$	39 ± 1 bA	$420 \pm 14eA$	$132 \pm 1 \mathrm{cB}$		$260 \pm 10 \mathrm{dA}$	$168 \pm 5 fA$
2012 perilla alcohol 2007 1.1 ± 0.04 aB 1.8 ± 0.06 aB 106 ± 6 cA 239 ± 2 dB ND ND 13.9 ± 0.2 bB 2008 0.6 ± 0.02 aA 0.8 ± 0.07 aA 122 ± 6 bB 133 ± 6 bA ND ND 0.6 ± 0.001 a 2310 (E)-2,6-dimethylocta-2,7-diene-1,6-diol ^d 2008 510 ± 90 dB 170 ± 10 bA 260 ± 70 cA 240 ± 20 bA 400 ± 40 cdA 530 ± 50 dB ND 10.0 ± 0.001 a 10.0 ± 0.001 b 10.0 ± 0										
2008 0.6 ± 0.02 aA 0.8 ± 0.07 aA 122 ± 6 bB 133 ± 6 bA 133 ± 6 bA 133 ± 6 bA 120 ± 0.07 aB 120 ± 0.001 a 120 ± 0.001 b 120 ± 0.00	2012	perilla alcohol		$1.1 \pm 0.04 aB$			$239\pm2\mathrm{dB}$			
2310 (E)-2,6-dimethylocta- 2,7-diene-1,6-diol ^d 2008 510 ± 90 dB 170 ± 10bA 260 ± 70cA 240 ± 20bA 400 ± 40cdA 530 ± 50 dB ND norisoprenoids 2007 69 36 59 28 94 203 455 1044 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2cbA 35 ± 1fB 10.1 ± 0.01bA 1500 theaspirane B 2007 14 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 13.9 ± 0.05 dB 14 ± 2dA 4.8 ± 0.1bA 2008 15 ± 1dA 4.2 ± 0.001bA 6.3 ± 0.4cA ND 6.1 ± 0.01bA 7.1 ± 0.001bA 7.1 ± 0.001bA 7.1 ± 0.001bA 7.5 ± 0.01cA 2008 7.0 ± 0.001bA ND 7.3 ± 0.01bA 7.1 ± 0.001bA 7.1 ± 0.001bA 7.5 ± 0.01cA 1822 dihydro-β-ionone ^e 2007 0.5 ± 0.01bA ND ND ND ND 3.5 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.001 dB 12.0 ± 0.001cB 3.0 ± 0.01cB 3.0 ± 0.01cB 3.0 ± 0.01cB 3.0 ± 0.001bA ND 7.5 ± 0.001cB 7.0 ± 0.001bA ND 7.5 ± 0.001cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cB 3.3 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.001cB 3.3 ± 0.1cB 3.										0.6 ± 0.001 aA
2,7-diene-1,6-diol d 2008 $510 \pm 90 \mathrm{dB}$ $170 \pm 10 \mathrm{bA}$ $260 \pm 70 \mathrm{cA}$ $240 \pm 20 \mathrm{bA}$ $400 \pm 40 \mathrm{cdA}$ $530 \pm 50 \mathrm{dB}$ ND norisoprenoids 2007 69 36 57 32 104 194 720 208 71 36 59 28 94 203 455 1464 theaspirane A 2007 $12.9 \pm 0.2 \mathrm{cA}$ ND $14.4 \pm 0.2 \mathrm{cA}$ ND $12.7 \pm 0.2 \mathrm{bcA}$ $16.7 \pm 0.7 \mathrm{cA}$ $10.1 \pm 0.01 \mathrm{bA}$ 2008 $14.4 \pm 0.4 \mathrm{dB}$ ND $19.7 \pm 0.2 \mathrm{eB}$ ND $12.7 \pm 0.2 \mathrm{cA}$ 35 ± 1fB $10.1 \pm 0.01 \mathrm{bA}$ 1500 theaspirane B 2007 $14 \pm 1 \mathrm{dA}$ $4.2 \pm 0.001 \mathrm{bA}$ $10.6 \pm 0.4 \mathrm{cB}$ ND $13.9 \pm 0.05 \mathrm{dB}$ $14 \pm 2 \mathrm{dA}$ $16.2 \pm 0.05 \mathrm{dB}$ 16	2310	(E)-2,6-dimethylocta-				$290 \pm 50 \mathrm{cA}$				
norisoprenoids 2007 69 36 57 32 104 194 720 208 71 36 59 28 94 203 455 10.4 ± 0.4										
2008 71 36 59 28 94 203 455 1464 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2bcA 16.7 ± 0.7cA 10.1 ± 0.01bA 10.0 ± 0.01bA		_,,	2008	$510\pm 90\mathrm{dB}$	$170\pm10\text{bA}$	$260 \pm 70 \text{cA}$	$240 \pm 20 \text{bA}$	$400\pm40\text{cdA}$	$530\pm50\mathrm{dB}$	ND
1464 theaspirane A 2007 12.9 ± 0.2cA ND 14.4 ± 0.2cA ND 12.7 ± 0.2bcA 16.7 ± 0.7cA 10.1 ± 0.01bA 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2eB ND 12.7 ± 0.2cA 35 ± 1fB 10.1 ± 0.01bA 15.00 theaspirane B 2007 14 ± 1dA 4.2 ± 0.001bA 10.6 ± 0.4cB ND 13.9 ± 0.05 dB 14 ± 2dA 4.8 ± 0.1bA 2008 15 ± 1dA 4.2 ± 0.001bA 6.3 ± 0.4cA ND 6.1 ± 0.4cA 29 ± 1eB 4.6 ± 0.5bcA 1810 β -damascenone 2007 7.2 ± 0.001bA 7.1 ± 0.001bA ND 7.3 ± 0.01bA 7.1 ± 0.001bA 7.1 ± 0.2bB 7.8 ± 0.1cA 2008 7.0 ± 0.001bA 7.0 ± 0.001bA ND ND 8.1 ± 0.1 dB 7.2 ± 0.001cA ND 7.5 ± 0.001cB 1822 dihydro- β -ionone $^{\theta}$ 2007 0.5 ± 0.01bA ND ND ND 3.5 ± 0.1cB 3.3 ± 0.1cA 9.2 ± 0.04 dB		norisoprenoids	2007		36			104		
1500 theaspirane B 2008 14.4 ± 0.4 dB ND 19.7 ± 0.2 eB ND 12.7 ± 0.2 cA 35 ± 1 fB 10.1 ± 0.01 bA 15.0 0 theaspirane B 2007 14 ± 1 dA 4.2 ± 0.001 bA 10.6 ± 0.4 cB ND 13.9 ± 0.05 dB 14 ± 2 dA 4.8 ± 0.1 bA 10.6 ± 0.4 cB ND 13.9 ± 0.05 dB 14 ± 2 dA 14.8 ± 0.1 bA 14.8 ± 0.1										455
1500 theaspirane B 2007 14 ± 1 dA 4.2 ± 0.001 bA 10.6 ± 0.4 cB ND 13.9 ± 0.05 dB 14 ± 2 dA 4.8 ± 0.1 bA 2008 15 ± 1 dA 4.2 ± 0.001 bA 6.3 ± 0.4 cA ND 6.1 ± 0.4 cA 29 ± 1 eB 4.6 ± 0.5 bcA 1810 $β$ -damascenone 2007 7.2 ± 0.001 bA 7.1 ± 0.001 bA ND 7.3 ± 0.01 bA 7.1 ± 0.001 bA 7.1 ± 0.001 bA 7.1 ± 0.001 bA 7.1 ± 0.001 bA ND 8.1 ± 0.1 dB 7.2 ± 0.001 cA ND 7.5 ± 0.001 cA ND 7.5 ± 0.001 cA ND 7.5 ± 0.001 cA ND 7.5 ± 0.001 cA ND ND ND 7.5 ± 0.001 cA $7.5\pm0.$	1464	theaspirane A	2007		ND	$14.4 \pm 0.2 \text{cA}$	ND	$12.7 \pm 0.2 \text{bcA}$		$10.1\pm0.01\text{bA}$
2008 15±1dA 4.2±0.001bA 6.3±0.4cA ND 6.1±0.4cA 29±1eB 4.6±0.5bcA 1810 β-damascenone 2007 7.2±0.001bA 7.1±0.001bA ND 7.3±0.01bA 7.1±0.001bA 7.1±0.2bB 7.8±0.1cA 2008 7.0±0.001bA 7.0±0.001bA ND 8.1±0.1dB 7.2±0.001cA ND 7.5±0.001c ND ND ND 3.5±0.1cB 3.3±0.1cA 9.2±0.04 dB 3.2±0.04 dB			2008	$14.4\pm0.4\mathrm{dB}$	ND	$19.7 \pm 0.2 \mathrm{eB}$	ND	$12.7 \pm 0.2 \text{cA}$	$35\pm1\mathrm{fB}$	$10.1\pm0.01\text{bA}$
1810 β-damascenone2007 7.2 ± 0.001bA7.1 ± 0.001bAND7.3 ± 0.01bA7.1 ± 0.001bA7.1 ± 0.2bB7.8 ± 0.1cA2008 7.0 ± 0.001bA7.0 ± 0.001bAND8.1 ± 0.1 dB7.2 ± 0.001cAND7.5 ± 0.001c1822 dihydro-β-iononee2007 $0.5 \pm 0.01bA$ NDNDND3.5 ± 0.1cB3.3 ± 0.1cA9.2 ± 0.04 dB	1500	theaspirane B	2007		$4.2\pm0.001\text{bA}$	$10.6\pm0.4\text{cB}$		$13.9\pm0.05~\text{dB}$		$4.8\pm0.1\text{bA}$
2008 7.0 ± 0.001 bA 7.0 ± 0.001 bA ND 8.1 ± 0.1 dB 7.2 ± 0.001 cA ND 7.5 ± 0.001 c ND ND ND 3.5 ± 0.1 cB 3.3 ± 0.1 cA 9.2 ± 0.004 dB 3.3 ± 0.1 cA 3.3 ± 0.1			2008	$15\pm1\mathrm{dA}$	$4.2\pm0.001\text{bA}$	$6.3 \pm 0.4 \text{cA}$	ND	$6.1 \pm 0.4 \text{cA}$	$29\pm1\mathrm{eB}$	$4.6\pm0.5\text{bcA}$
1822 dihydro- β -ionone e 2007 0.5 \pm 0.01bA ND ND ND 3.5 \pm 0.1cB 3.3 \pm 0.1cA 9.2 \pm 0.04 dB	1810	eta-damascenone	2007	$7.2\pm0.001\text{bA}$	$7.1\pm0.001\text{bA}$	ND	$7.3\pm0.01\text{bA}$	$7.1 \pm 0.001 \mathrm{bA}$	$7.1\pm0.2\text{bB}$	$7.8\pm0.1\text{cA}$
1822 dihydro- β -ionone e 2007 0.5 \pm 0.01bA ND ND ND 3.5 \pm 0.1cB 3.3 \pm 0.1cA 9.2 \pm 0.04 dB			2008	$7.0\pm0.001\text{bA}$	$7.0\pm0.001\text{bA}$	ND	$8.1\pm0.1\mathrm{dB}$	$7.2 \pm 0.001 \text{cA}$	ND	$7.5\pm0.001\mathrm{cA}$
	1822	dihydro- eta -ionone e	2007	$0.5\pm0.01\text{bA}$	ND	ND	ND	$3.5\pm0.1\text{cB}$		$9.2\pm0.04\mathrm{dB}$
			2008	$0.9\pm0.1 \mathrm{bB}$	ND	ND	ND	1.9 ± 0.2 cA	$3.9 \pm 0.2 \mathrm{eB}$	$2.3\pm0.1 \mathrm{dA}$

Table 4. Continued

RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)
1844	α -ionone	2007 2008	5.2 ± 0.001 aA 5.1 ± 0.01 bA	4.6 ± 0.001 aA 4.8 ± 0.001 bA	5.6 ± 0.01 aA 5.3 ± 0.6 bA	4.4 ± 0.01aB ND	5.7 ± 0.001 aA 5.7 ± 0.001 bA	12.2 ± 0.4bB 10.6 ± 0.01cA	185 ± 3 cA 197 ± 3 dB
1908	$\alpha\text{-ionol}^{\varrho}$	2007 2008	2.3 ± 0.01 bB 1.9 ± 0.1 bA	ND ND	4.2 ± 0.2bA 6.3 ± 0.1cB	ND ND	3.8 ± 0.1 bB 2.7 ± 0.3 bA	11.3 ± 0.8cA 10.4 ± 0.5dA	$124 \pm 2 \text{dB}$ $27 \pm 1 \text{eA}$
1936	eta-ionone	2007	$22.8\pm0.1\text{aA}$	$20.3\pm0.01\text{aA}$	$20.3\pm0.1\text{aA}$	$20.3\pm0.1\text{aA}$	$52\pm1\mathrm{bA}$	$115\pm4\mathrm{cB}$	$360\pm20\mathrm{dB}$
1964	dihydro- eta -ionol e	2008	24.1 ± 0.6aB 0.6 ± 0.02bA	20.3 ± 0.01aA ND	20.3 ± 0.01 aA 1.5 ± 0.02 cA	20.3 ± 0.1aA ND	53.2 ± 0.5 bA 3.3 ± 0.1 dB	$100 \pm 1 \text{cA}$ $5.3 \pm 0.8 \text{eA}$	189 ± 2dA ND
2678	4-oxo-β-ionone ^e	2008 2007	0.6 ± 0.02 bA 1.0 ± 0.1 bB	ND ND	1.5 ± 0.1 cA ND	ND ND	1.6 ± 0.07 cA 1.1 ± 0.04 bA	$7.2 \pm 0.2 \mathrm{dB}$ $1.5 \pm 0.2 \mathrm{cA}$	ND $9.6\pm0.5\mathrm{dB}$
2833	4-hydroxy-β-ionone ^e	2008 2007	$0.6 \pm 0.07 \text{bA} \\ 1.0 \pm 0.1 \text{bA}$	ND ND	ND ND	ND ND	1.0 ± 0.1 cA 0.6 ± 0.06 abA	$\begin{aligned} \text{1.3} \pm \text{0.2dA} \\ \text{4.7} \pm \text{0.2cB} \end{aligned}$	7.8 ± 0.4 eA 6.1 ± 0.7 dA
856	3-oxo- α -ionol e	2008 2007	1.1 ± 0.1 bA 0.6 ± 0.02 bA	ND ND	ND ND	ND ND	1.0 ± 0.1 bB ND	$2.2 \pm 0.1 { m cA} \ 0.9 \pm 0.09 { m cA}$	6.8 ± 0.6 dA 1.9 ± 0.1 dB
2004	4 0 ! 16	2008	0.4 ± 0.001bA	ND	ND	ND	ND	1.4 ± 0.1cB	1.3 ± 0.1cA
2861	4-oxo-β-ionol ^e	2007 2008	$0.9 \pm 0.02 \text{bA} \\ 0.8 \pm 0.01 \text{bA}$	ND ND	ND ND	ND ND	ND ND	1.5 ± 0.1 cA 1.3 ± 0.1 cA	1.8 ± 0.1 dA 1.4 ± 0.1 cA
	shikimic acid derivatives	2007 2008	1981 1084	2010 2037	1952 3180	1414 1114	758 656	1794 1962	876 1666
1885	phenylmethanol	2007		1340 ± 90cA	1440 ± 60cdA	790 ± 80 bA	$360 \pm 5aA$	1630 ± 90deA	$700 \pm 80 \mathrm{bA}$
		2008	$900\pm80\text{bA}$	$\rm 1500\pm100cA$	$1760 \pm 90 \mathrm{cA}$	$690 \pm 50 \mathrm{abA}$	$340 \pm 60 \text{aA}$	$1780 \pm 90 \mathrm{cA}$	$1510 \pm 90 \mathrm{cB}$
1920	2-phenylethanol	2007 2008	180 ± 2 bB 90 ± 4 aA	420 ± 20 cA 360 ± 50 bA	66 ± 4 aA 70 ± 1 aA	$490 \pm 70 \mathrm{cB}$ $320 \pm 50 \mathrm{bA}$	177 ± 1 bA 170 ± 10 aA	100 ± 10 aA 90 ± 10 aA	65 ± 5 aA 110 ± 20 aB
2010	4-phenylbutan-2-ol	2007	29 ± 3cB	$115 \pm 9 \text{ dB}$	114 ± 12dA	12 ± 1bA	30 ± 4cB	2.0 ± 0.1 aA	-aA
	• •	2008	$18\pm2\text{bA}$	$68 \pm 5 \text{cA}$	$210\pm20\mathrm{dB}$	$13\pm2\text{bA}$	$19\pm1\text{bA}$	$\rm 3.8\pm0.2aB$	-aA
2119	cumic alcohol	2007	ND	4.8 ± 0.4 bA	5.6 ± 0.2 bA	33.0 ± 0.3cB	ND	ND	$68 \pm 1 dB$
2303	cinnamyl alcohol	2008 2007	ND $30 \pm 3bA$	4.3 ± 0.1 bA 113 ± 10 dB	7.2 ± 0.5 cA 238 ± 5 eA	13 ± 1 dA 58 ± 1 0cA	ND 75 ± 9 cB	ND ND	$16\pm1eA$ ND
-000	ommaniyi aloonol	2008	$23 \pm 4bA$	73 ± 9cA	$1020 \pm 20 dB$	50 ± 10cA	18 ± 2bA	ND	12 ± 1bB
755	methyl salicylate	2007	$38\pm1\text{eB}$	$\rm 5.0\pm0.1bA$	$9.5 \pm 0.4 \text{cA}$	ND	$78.5 \pm 0.5 \text{fA}$	$13.3\pm0.2\text{dA}$	3.8 ± 0.01 b/
		2008	33 ± 0.3 eA	$5.3 \pm 0.1 \text{bA}$	12.7 ± 0.3cB	ND	$76.0 \pm 0.2 \text{fA}$	$16.5 \pm 0.2 \mathrm{dB}$	4.6 ± 0.01 bE
2182	eugenol	2007 2008	1.8 ± 0.01aB	$0.9 \pm 0.1 aB$	$22\pm1 ext{dA}$ $44\pm2 ext{cB}$	5.7 ± 0.1 cB	3.7 ± 0.1 bB	5.7 ± 0.5 cA	5.9 ± 0.4 cB
2360	chavicol ^f	2008	1.0 ± 0.01aA 5.4 ± 0.1cA	0.6 ± 0.05 aA ND	44 ± 205 6.1 ± 0.1cA	2.5 ± 0.1 aA 5.4 ± 0.9 cB	2.3 ± 0.1 aA 3.2 ± 0.2 bA	8.1 ± 0.4 bB ND	2.3 ± 0.1 aA 20 ± 2 dB
.000	chavicor	2008	4.6 ± 0.4 cA	ND	5.9 ± 0.1 dA	ND	2.5 ± 0.2 bA	8 ± 1eA	$11.0 \pm 0.5 fA$
2364	isoeugenol	2007	ND	ND	$14.3\pm0.1\text{dA}$	ND	$13.2\pm0.1\text{bA}$	$14.0 \pm 0.1 \text{cA}$	13.9 ± 0.01 cE
		2008	ND	$12.7\pm0.01\text{cB}$	$15.2\pm0.01\mathrm{dB}$	$3.2\pm0.1\text{bB}$	$13.9 \pm 0.01 \text{cA}$	$19.0 \pm 0.6 \mathrm{eB}$	ND
2571	methoxyeugenol ^f	2007 2008	17 ± 3 bcA 14 ± 2 bA	11 ± 1 bA 13 ± 2 bA	37 ± 6 eA 35 ± 4 dA	20 ± 3 cA 22.8 ± 0.5 cA	18 ± 4 bcA 14 ± 2 bA	$29\pm2 ext{dA} \ 37\pm4 ext{dB}$	ND ND
	lipid derivatives		6141	3603	3628	6338	6707	5472	22916
	•	2008	5655	5324	6908	8838	6570	12854	14202
	C6 compounds	2007	3350	2211	1061	2470	1312	826	182
1000	hexanal	2008 2007	3330 $550 \pm 40 \text{dA}$	3958 230 ± 20bcA	2100 180 ± 30bA	4580 210 ± 8bcA	2620 273 ± 3cA	1080 200 ± 30bcA	1017 16 ± 3aA
1032	Hexaliai	2007	780 ± 30bB	800 ± 90bB	$420 \pm 300A$	1240 ± 90cB	800 ± 30bB	390 ± 90aB	490 ± 30aB
1219	(E)-2-hexenal	2007	200 ± 30 cA	140 ± 10 bA	120 ± 8abA	510 ± 10 dA	130 ± 20 bA	$90 \pm 6 abA$	$72 \pm 4aA$
		2008	$460\pm40 \mathrm{aB}$	$410\pm60 \text{aB}$	$490\pm40 \mathrm{aB}$	$1800\pm10\text{bB}$	$400\pm40 \mathrm{aB}$	$\rm 300 \pm 40 aB$	$370 \pm 40 \mathrm{aB}$
1355	1-hexanol	2007	$820 \pm 90 dA$	440 ± 60cA	200 ± 40bA	1080 ± 60eA	247 ± 7bA	18 ± 1aA	49 ± 1aB
1370	(Z)-3-hexen-1-ol	2008 2007	710 ± 90 cA 410 ± 50 eB	570 ± 80 cA 310 ± 40 dA	390 ± 40 bB 190 ± 40 cA	1060 ± 90 dAND	$400 \pm 30 \text{bB}$ ND	20 ± 1 aA 78 ± 2 bB	$17 \pm 2aA$ $45 \pm 5bA$
10/3	(2)-0-116X611-1-01	2007	240 ± 40bA	440 ± 60cA	$150 \pm 400A$	ND	ND	70 ± 200 50 ± 10abA	$140 \pm 20 \text{bB}$
1400	(E)-2-hexen-1-ol		$1370 \pm 90 dA$	1070 ± 90cA	340 ± 60 bA	500 ± 30 bA	490 ± 10bA	250 ± 50 bA	ND
		2008	1140 ± 90dA	$1720 \pm 90 \mathrm{eB}$	$650 \pm 50 \mathrm{cB}$	480 ± 50bcA	$1020\pm40\mathrm{dB}$	$320\pm60\text{bA}$	ND
	carbonyls	2007	391	21	31	170	172	190	ND
1100	2-hentanone	2008	567 360 → 50c∆	18 3.0 ± 0.001aB	80 6 ± 1aA	110 158 + 7hB	157 153 → 1hB	423 160 + 40hΔ	64 ND
1192	2-heptanone	2007 2008	$360 \pm 50 \mathrm{cA}$ $540 \pm 40 \mathrm{eB}$	3.0 ± 0.001 aB 1.4 ± 0.001 aA	$6 \pm 1aA$ $61 \pm 3bB$	158 ± 7 bB 100 ± 20 bcA	$153 \pm 1 \mathrm{bB}$ $133 \pm 5 \mathrm{cA}$	$160 \pm 40 \mathrm{bA}$ $410 \pm 60 \mathrm{dB}$	32 ± 4 bB
1570	2-undecanone	2007	$7.0 \pm 0.7 \text{bB}$	ND	$6.2 \pm 0.2 \text{bA}$	ND	ND	ND	ND
	· · · ·	2008	5.4 ± 0.1 bA	ND	6.3 ± 0.1 cA	ND	ND	ND	$8.1 \pm 0.1 \text{dB}$
1477	(E,E)-2,4-heptadienal	2007	24 ± 0.001 dB	17.7 ± 0.1cA	19 ± 2cdB	12 ± 1bA	19 ± 2cdA	$30 \pm 4eB$	ND
		2008	21.5 ± 0.5cA	16.5 ± 0.01bA	12.2 ± 0.5aA	10 ± 1aA	24 ± 3cA	13 ± 1abA	24 ± 3cB
	alcohols	2007	878 672	236	239	1168	2201	286	83
1326	2-heptanol	2008 2007	672 780 ± 90 cA	262 140 \pm 50bA	560 76 \pm 5abA	1198 960 \pm 70dA	1610 2090 ± 10eB	480 240 ± 20bA	212 ND
. 020	- noptanoi	2001	, 00 T 000V	1-10 T 000V	, o _ Jaun	000 <u>1</u> 100A	-000 T 100D	2-10 T 500V	ND

Table 4. Continued

RI	compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	red raspberry (cv. Meeker)
1446	1-octen-3-ol	2008 2007	$610 \pm 90 \mathrm{cA}$ $8.0 \pm 0.6 \mathrm{eB}$	$170 \pm 40 \mathrm{bA}$ $5.6 \pm 0.6 \mathrm{dA}$	$260 \pm 40 \text{bB} \\ 4.4 \pm 0.4 \text{cA}$	$1060 \pm 90 \mathrm{dA}$ $7.6 \pm 0.1 \mathrm{eA}$	$1510 \pm 70 \mathrm{eA}$ $4.8 \pm 0.4 \mathrm{cdA}$	$410 \pm 90 \text{bcB} \\ 3.4 \pm 0.1 \text{bA}$	ND 2.2 ± 0.1aA
		2008	$5\pm1\mathrm{bA}$	$5.6\pm0.2\text{bA}$	$12\pm1\mathrm{dB}$	$7.3 \pm 0.5 \text{cA}$	$11.1\pm0.2\mathrm{dB}$	$4.4\pm0.6 \text{abA}$	$4.1\pm0.1 \mathrm{aB}$
1452	heptanol	2007	$15\pm1 \mathrm{bB}$	$22\pm2\mathrm{cA}$	24 ± 3 cA	$24\pm2\mathrm{cA}$	$9.2\pm0.5 \mathrm{bB}$	$13 \pm 2bA$	$2.8\pm0.2aA$
		2008	$10 \pm 1 \text{bA}$	$24\pm2cA$	$34 \pm 2eB$	$23\pm2\text{dA}$	$6.1 \pm 0.1 \mathrm{abA}$	$18\pm3 \mathrm{cB}$	$4.0\pm0.2\text{aB}$
1461	6-methyl-5-hepten-2-ol	2007	$34 \pm 5 \mathrm{aB}$	$37 \pm 4aA$	$110 \pm 10 cA$	$20 \pm 2aA$	$78 \pm 1bA$	$20 \pm 3aA$	$78 \pm 3bA$
		2008	$22 \pm 4aA$	$43 \pm 5 bA$	$94\pm 6 \mathrm{dA}$	$19 \pm 2aA$	$76 \pm 4cA$	$32 \pm 6abB$	$191 \pm 7 \mathrm{eB}$
1543	octanol	2007	$41\pm6\mathrm{fB}$	$32 \pm 2eB$	$25\pm3\mathrm{dA}$	$157 \pm 1 \mathrm{gB}$	$19 \pm 3 \mathrm{cB}$	$10 \pm 1bA$	-aA
		2008	25 ± 4aA	19 ± 1aA	160 ± 20cB	89 ± 5 bA	7 ± 1aA	15.2 ± 0.1 aB	13 ± 1aB
	acids	2007 2008	1424 759	1115 1040	2076 3816	2468 2890	2840 1982	4012 10610	15410 9540
1607	butanoic acid	2007	$310 \pm 3aA$	240 ± 30 aA	390 ± 10abA	$290 \pm 20 aB$	540 ± 30cB	440 ± 20bA	$3530 \pm 50 \mathrm{dB}$
1007	Dutarioic aciu	2007	298 ± 8aA	$225 \pm 6aA$	790 ± 10cB	$237 \pm 9aA$	452 ± 8bA	$1560 \pm 80 \text{dB}$	1390 ± 50dA
1655	2-methylbutanoic acid	2006	335 ± 6 bcB	430 ± 20 cA	$216 \pm 3abA$	$1330 \pm 90 dA$	452 ± 6 bbA 210 ± 6 abA	172 ± 2aA	$440 \pm 40 cA$
1000	2-memyibutanoic aciu								
1056	havanaia aaid	2008	270 ± 20abA	490 ± 50abA	226 ± 7 abA 830 ± 80 abA	2100 ± 20cB	220 ± 20abA	200 ± 10aB	600 ± 40bB
1000	hexanoic acid	2007	660 ± 90abB	330 ± 60 aA		810 ± 90abB	1840 ± 90bB	3320 ± 90cA	$10700 \pm 900 \text{dB}$
2000	ootonoio ooid	2008	109 ± 9aA	$260 \pm 40 aA$	2040 ± 90bB	533 ± 3abA	$1140 \pm 30 \text{bA}$	8460 ± 20cB	6750 ± 90 cA
∠∪80	octanoic acid	2007	119 ± 5aB	115 ± 9aB	640 ± 20cA	$38 \pm 3aB$	250 ± 10bB	80 ± 10aA	$740 \pm 80 dA$
		2008	82 ± 3abA	65 ± 2abA	760 ± 70dA	20 ± 1aA	170 ± 20bA	390 ± 70cB	1340 ± 90eB
	esters	2007	71	10	59	2	105	45	118
1010	atherd broken and a	2008	305	36	169	5	152 17.7 ± 0.2bB	91	15
1043	ethyl butanoate	2007	ND	ND	ND	ND		ND	ND
4407	and the Library and a	2008	ND	ND	ND	ND	8.0 ± 0.5 bA	ND	ND
1197	methyl hexanoate	2007	ND	ND	1.8 ± 0.3bA	ND	7.8 ± 0.4cB	9.4 ± 0.6cB	$44 \pm 2 dB$
		2008	ND	ND	1.6 ± 0.3 bA	ND	3.4 ± 0.2 cA	ND	1.3 ± 0.2 bA
1244	ethyl hexanoate	2007	10 ± 1bB	4.3 ± 0.1abB	$22 \pm 2cA$	2.0 ± 0.1 aA	46 ± 1 dB	28 ± 1cA	$70 \pm 5 \mathrm{eB}$
		2008	2.9 ± 0.1 aA	$1.6 \pm 0.1 aA$	$30 \pm 1 \mathrm{cB}$	$5.3 \pm 0.4 aB$	$16.5 \pm 0.6 \text{bA}$	$32 \pm 4cA$	$13 \pm 1bA$
1274	hexyl acetate	2007	$23 \pm 2cA$	ND	$10 \pm 1bA$	ND	$8.6 \pm 0.2 \text{bA}$	ND	$1.4 \pm 0.2aB$
		2008	$96 \pm 4 \mathrm{dB}$	$5.1 \pm 0.5 aB$	$30 \pm 1 \mathrm{cB}$	ND	24 ± 1bB	ND	ND
1314	(Z)-3-hexenyl acetate	2007	$4.3 \pm 0.9 dA$	$1.3 \pm 0.1 \text{bA}$	2.4 ± 0.7 bcA	ND	ND	2.2 ± 0.2 bA	2.7 ± 0.2 cB
		2008	$49\pm2\mathrm{dB}$	$9.2 \pm 0.8 \mathrm{bB}$	12.7 ± 0.5 cB	ND	ND	$15 \pm 2cB$	1.1 ± 0.1 aA
1330	(E)-2-hexenyl acetate	2007	$34 \pm 1 dA$	$4.8 \pm 0.6 \mathrm{bA}$	$23\pm2cA$	ND	$25.3 \pm 0.6 \text{cA}$	5.1 ± 0.8 bA	ND
		2008	$157\pm20\mathrm{dB}$	20 ± 4bB	95 ± 4cB	ND	100 ± 2cB	44 ± 6bB	ND
	lactones	2007	27	10	162	60	76	113	7123
		2008	22	10	183	55	49	170	3354
1912	γ -octalactone	2007	$3.8 \pm 0.01 \mathrm{abA}$	3.2 ± 0.01 aA	5.7 ± 0.1 cA	4.7 ± 0.01 bcA	$9.0\pm0.2\mathrm{dB}$	4.1 ± 0.01 abA	$51\pm1 \mathrm{eB}$
		2008	3.7 ± 0.1 bA	3.0 ± 0.001 aA	$7.7 \pm 0.1 \mathrm{eB}$	$5.1 \pm 0.1 \mathrm{dA}$	8.0 ± 0.001 eA	$4.6\pm0.001\text{cA}$	$38.0 \pm 0.4 fA$
1967	δ -octalactone	2007	$4.1 \pm 0.4 aA$	ND	$63 \pm 2cA$	ND	1.8 ± 0.2 aA	$25.3\pm0.4\text{bA}$	$1780\pm30\mathrm{dB}$
		2008	3.9 ± 0.2 aA	ND	$82 \pm 3 \mathrm{cB}$	ND	1.3 ± 0.2 aA	72 ± 3 bB	$1010 \pm 6 \mathrm{dA}$
1998	γ -nonalactone	2007	ND	ND	ND	ND	ND	ND	$10 \pm 1bA$
		2008	ND	ND	ND	ND	ND	ND	$16.5 \pm 0.4 \mathrm{bB}$
2022	δ -nonalactone	2007	$\rm 3.5\pm0.2abB$	$2.9\pm0.1\text{aB}$	$4.1 \pm 0.2 \text{abA}$	$4.4\pm0.01\text{bA}$	$4.6\pm0.2\text{bB}$	$4.4\pm0.2\text{bA}$	$29\pm2cA$
		2008	$2.8\pm0.04\text{abA}$	$2.3\pm0.05 \text{aA}$	$\rm 3.7 \pm 0.2 bA$	$5.6 \pm 0.4 \mathrm{cB}$	$\rm 3.9 \pm 0.02bA$	$\rm 3.5\pm0.5bA$	$26.6 \pm 0.6 \text{dA}$
2031	γ -decalactone	2007	$4.2\pm0.1\text{bcB}$	$1.8\pm0.04aA$	$5.8 \pm 0.4 \text{cA}$	$42\pm2\mathrm{eA}$	$52\pm1\mathrm{fB}$	$3.2\pm0.1 \mathrm{abB}$	$12\pm1 dA$
		2008	$\rm 3.7 \pm 0.1bA$	1.8 ± 0.1 aA	$6.3\pm0.1\text{cA}$	$38\pm1 fA$	$30\pm2\text{eA}$	$1.9 \pm 0.1 \mathrm{aA}$	$12.2\pm0.4\text{dA}$
2079	δ -decalactone	2007	$7.8\pm0.1\text{bB}$	1.0 ± 0.1 aA	$82\pm2cA$	$7.7\pm0.2\text{bB}$	$8.0\pm0.4\text{bB}$	$75\pm3\mathrm{cA}$	$5240\pm90\mathrm{dB}$
		2008	6.8 ± 0.1 aA	$2.2\pm0.1 \mathrm{aB}$	$81 \pm 4 \text{bA}$	4.7 ± 0.1 aA	4.6 ± 0.4 aA	$87 \pm 4 \mathrm{bB}$	$2250 \pm 30 \text{cA}$
2142	δ -dodecalactone	2007	$3.5\pm0.2\mathrm{cB}$	1.3 ± 0.001 bB	$1.5\pm0.001\text{bA}$	1.5 ± 0.1 bA	1.0 ± 0.001 abA	0.8 ± 0.001 aA	0.8 ± 0.001 a
		2008	$\rm 1.5\pm0.001bA$	$0.6\pm0.001\text{aA}$	$2.5\pm0.001\mathrm{dB}$	$\rm 1.9 \pm 0.1 cB$	$0.8\pm0.001\text{aA}$	$0.6\pm0.001\text{aA}$	0.8 ± 0.001 a/
	furanones	2007	3888	230	740	4121	2767	230	710
		2008	3593	240	810	4018	2432	240	730
1567	mesifurane	2007	38 ± 2 bB	ND	ND	81 ± 1cA	26.6 ± 0.4bB	ND	ND
		2008	22.8 ± 0.6 bA	ND	ND	208 ± 9cB	21.5 ± 0.4 bA	ND	ND
				-		—			
2060	Furaneol		$3850\pm30\mathrm{dB}$	$230\pm20aA$	$740 \pm 10 \mathrm{bA}$	$4040\pm20\mathrm{dB}$	$2740 \pm 20 \mathrm{cB}$	$230 \pm 2aA$	$710 \pm 30 \mathrm{bA}$

 $[^]a$ Letters (a-g) within rows indicate the significant difference of the compounds among the cultivars by ANOVA with a Tukey test at p=0.05. Letters (A, B) between years indicate significant difference between years by t test. ND, not detected. RI, retention index. b The concentration was estimated by the compound of 4-terpineol in SBSE method. c The concentration was estimated by the compound isoeugenol in SPE method. e The concentration was estimated by the compound isoeugenol in SPE method. f The concentration was estimated by the compound isoeugenol in SBSE method.

for other terpene compounds. Some compounds have a low degree of heritability, and they are easily lost during the breeding process (5).

(ii) Norisoprenoids. 'Marion' contained the whole spectrum of norisoprenoids, with a middle range concentration. However, the concentration for each individual compound was low.

The cultivars from the maternal side of the pedigree including 'Chehalem', 'Santiam', and 'Himalaya' had very limited amounts of norisoprenoids, whereas the cultivars representing the paternal side including 'Olallie', 'Logan', and especially 'Meeker' had significantly higher (p < 0.001) norisoprenoid contents. The total concentration of norisoprenoids in 'Meeker' was > 10 times the amount in 'Marion'.

Norisoprenoids are important aroma-contributing compounds in 'Marion' blackberry and raspberry (13, 14). The genotypes in the paternal side of 'Marion' pedigree all had high levels of β -ionone. 'Meeker' had extremely high α -ionone and β -ionone contents. 'Logan' had much less β -ionone than 'Meeker' raspberry. Between 'Logan' and 'Olallie', about a 50% decrease was observed for β -ionone. However, the concentration of β -ionone in 'Marion' as well as in the cultivars from the maternal side of the pedigree was at similarly low level. Similarly, a 50% decrease was observed for a-ionone between 'Logan' and 'Olallie'. The level of α -ionone in 'Marion' was very similar to that in 'Chehalem' and 'Olallie'. Except for 'Santiam', the concentration of β -damascenone was similar for all genotypes in 'Marion's pedigree. β -Damascenone has a floral, rosy aroma, whereas α -ionone and β -ionone have typical raspberry notes.

- (iii) Shikimic Acid Derivatives. Two types of compounds were in this group: benzyl alcohols and volatile phenols. The sensorial contribution of shikimic acid derivatives to berry fruit is probably very small, because many of these compounds had low concentrations and high sensory thresholds. Phenylmethanol could contribute floral, rosy, aroma notes to the berry aroma. In 'Marion's pedigree, 'Marion' had a moderate level of phenylmethanol content, 'Chehalem', 'Santiam', and 'Logan' had high levels of phenylmethanol, and 'Himalaya' and 'Olallie' had low levels of phenylmethanol.
- (iv) Lipid Derivatives. Lipid derivatives were the most abundant volatile compounds in the genotypes representing 'Marion's pedigree. Thirty compounds were quantified, belonging to C6 compounds, carbonyls, alcohols, acids, esters, and lactones.

C6 compounds such as hexanal, (E)-2-hexenal, and (Z)-3hexen-1-ol contribute to a green, fresh fruit aroma. The concentration of these compounds strongly depends on fruit ripening stage. The same occurs with other carbonyl compounds. Although 'Himalaya' and 'Olallie' had no detectable level of (Z)-3-hexen-1-ol, it was reported that it was highly heritable and contributes to the aroma of fresh strawberry (6).

Five alcohol compounds were analyzed, and the major alcohol compound was 2-heptanol. 2-Heptanol is one of the very important aroma compounds in blackberries that contribute to fruity flavor. The concentration of 2-heptanol in 'Marion' was between that of its parents, 'Chehalem' and 'Olallie'.

Acids were found in all cultivars in the 'Marion' pedigree. 'Marion' had the lowest acid content, alongside its parent, 'Chehalem'. All other cultivars contained much higher acid, especially 'Meeker'. The high acid content in 'Meeker' was in agreement with a literature report (13).

Esters are important aroma compounds in fruit, responsible for the fruity impressions. Overall, the amount of esters was small in the genotypes representing 'Marion's pedigree, especially in 'Himalaya'. Only ethyl hexanoate was identified in 'Himalaya'. 'Chehalem' contained only a trace amount of esters. Esters such as ethyl hexanoate and hexyl acetate were important to 'Marion' flavor. The concentration of ethyl hexanoate in 'Marion' was between that of its parents, 'Chehalem' and 'Olallie'. However, 'Marion' had the highest level of hexyl acetate. In strawberry, ethyl hexanoate levels in the offspring often were much greater than that in either parent when the parents had very low levels, whereas for hexyl acetate, the levels of the offspring ranged around those of the parents, with some offspring having much lower and some much higher levels than the parents (5).

Lactones can contribute to fruity, peach aromas. However, the aroma contribution from lactones to 'Marion' was small and probably only served as background odor. 'Marion' only had trace amounts of lactones, similar to its parent 'Chehalem'. All other cultivars contained much higher lactones. 'Meeker' had extremely high lactone constituents, especially δ -octalactone and δ -decalactone, in agreement with a previous study (13). γ-Nonalactone was identified in only 'Meeker'. The concentration of lactones in 'Marion' was between that of its parents.

(v) Furanones. Furaneol and mesifurane were quantified in this study. All cultivars contained Furaneol; however, 'Marion', 'Himalaya', and 'Olallie' had much higher amounts of Furaneol than other cultivars. Of the three cultivars with high Furaneol concentrations, 'Himalaya' had the highest amount. Mesifurane was found only in the cultivars 'Marion', 'Himalaya', and 'Olallie'.

Furaneol has a sweet, caramel, and burnt sugar flavor, whereas mesifurane imparts sweet, cherry-like, and herbal notes. Furaneol is one of the most important compounds in 'Marion' flavor (8, 14). Interestingly, the concentration of furaneol was higher in 'Marion' than in its parents, 'Chehalem' and 'Olallie'.

Chiral Anaysis. There has been great interest in the determination of the enantiomeric composition of chiral compounds in foodstuffs (16) because different enantiomeric compounds may have different sensory thresholds and attributes (17, 18). Many aroma compounds in nature have a chiral center and can exist as enantiomeric forms. Generally, because enzymes in the plant metabolism are often stereospecific, the resulting secondary metabolites may have an enantiomer dominance. Different cultivars may have different enzyme systems and thus will affect the enantiomeric ratio of aroma compounds (11, 19). Study on the enantiomeric ratio of odor-active compounds in blackberries is very limited; only the stereodifferentiation of 2-heptanol, 6-methyl-5-hepten-2-ol, and linalool oxide has been reported (20, 21).

In this study, 11 pairs of chiral isomers were separated under experimental conditions in the cultivars representing 'Marion's pedigree (**Table 5**). Seasonal variation was observed. However, the trends for each individual enantiomeric compound in each cultivar were consistent from year to year. The genotypes in 'Marion's pedigree showed large variability for chiral isomers.

Most of the compounds demonstrated a much higher percentage of one isomer over another, particularly δ -octalactone, δ -decalactone, 6-methyl-5-hepten-2-ol, and α -ionone. δ -Octalactone and δ -decalactone had a strong enantiomeric excess of the (S)-form over the (R)-form, in > 80% for most of cultivars. δ-Decalactone provides a peachy/apricot-like olfactory impression and occurs in its (S)-form in the fruits(19). 2-Heptanol also occurred in enantiomeric excess of the (S)-form over the (R)-form for most of the cultivars, except for 'Chehalem'. 'Chehalem' had a (R)-form preference. This result contradicted a literature report that 2-heptanol occurred enantiomerically pure in unrelated blackberry species (R. laciniatus and R. glaucus) (20, 22). Linalool also existed in enantiomeric excess of the (S)-form over the (R)-form for most of cultivars. However, in 'Chehalem' and 'Himalaya' it existed in a racemic mixture. It is interesting to observe that a high (S)-linalool in 'Olallie' and a racemic (S)/(R)-linalool in 'Chehalem' resulted in an increased (S)-linalool in 'Marion'. The enantiomeric distribution of linalool in nature varies. Linalool is nearly a racemic mixture in raspberry(11) and passion fruit (17), but occurs as the almost pure (S)-isomer in orange juice (23). 2-Methylbutanoic acid was also in (S)-isomer form in excess of

Table 5. Isomeric Ratio of Some Chiral Compounds in Berries from the Genotypes Representing 'Marion' Blackberry's Pedigree

compound	year	Marion	Chehalem	Santiam	Himalaya	Olallie	Logan	Meeker
heptan-2-ol (S/R)	2007	62.0/38.0	43.6/56.4	67.1/32.9	77.0/23.0	51.6/48.4	100/0	68.3/31.7
	2008	63.2/36.8	38.5/61.5	85.0/15.0	71.4/28.6	59.4/40.6	92.1/7.9	66.4/33.6
linalool (S/R)	2007	80.2/19.8	49.8/50.2	74.7/25.3	48.9/51.1	92.4/7.6	80.7/19.3	69.3/30.7
	2008	87.2/12.8	50.5/49.5	70.5/29.5	46.9/53.1	92.9/7.1	84.6/15.4	76.5/23.5
2-methylbutanoic acid (S/R)	2007	83.5/16.5	82.8/17.2	62.0/38.0	77.9/22.1	64.9/35.1	64.1/35.9	78.0/22.0
	2008	79.2/20.8	83.8/16.2	61.4/38.6	82.5/17.5	64.8/35.2	61.1/38.9	72.8/27.2
δ -octalactone (<i>S/R</i>)	2007	82.0/18.0	-/-	95.3/4.7	-/-	92.0/8.0	89.6/10.4	96.6/3.4
	2008	89.6/10.4	-/-	95.6/4.4	-/-	83.7/16.3	92.8/7.2	94.6/5.4
δ -decalactone (<i>S</i> / <i>R</i>)	2007	94.1/5.9	100/0	99.2/0.8	88.2/11.8	92.6/7.4	98.2/1.8	92.8/7.2
	2008	85.7/14.3	100/0	99.0/1.0	90.2/9.8	91.4/8.6	98.7/1.3	99.5/0.5
6-methyl-5-hepten-2-ol (S/R)	2007	4.7/95.3	2.7/97.3	2.1/97.9	0/100	8.8/91.2	8.3/91.7	9.0/91.0
	2008	3.3/96.7	1.4/98.6	3.5/96.5	0/100	11.0/89.0	3.8/96.2	5.0/95.0
α -ionone (<i>S/R</i>)	2007	0/100	0/100	0/100	0/100	0/100	0/100	0.3/99.7
	2008	0/100	0/100	0/100	0/100	0/100	0/100	0.1/99.9
terpinen-4-ol (S/R)	2007	19.2/80.8	15.0/85.0	17.1/82.9	13.3/86.7	39.5/60.5	31.6/68.4	14.2/85.8
	2008	18.8/81.2	16.2/83.8	17.5/82.5	14.8/85.2	43.7/56.3	33.5/66.5	16.8/83.2
limonene (S/R)	2007	57.6/42.4	46.4/53.6	60.6/39.4	61.0/39.0	57.5/42.5	59.0/41.0	46.5/53.5
, ,	2008	58.4/41.6	45.6/54.4	54.7/45.3	58.5/41.5	59.2/40.8	57.8/42.2	40.1/59.9
α -terpinenol (S/R)	2007	58.7/41.3	38.8/61.2	44.9/55.1	49.7/50.3	59.6/40.4	57.8/42.2	78.4/21.6
	2008	58.6/41.4	35.6/64.4	42.1/57.9	45.7/54.3	59.1/40.9	54.8/45.2	65.8/34.2
Furaneol (1)/(2) ^a	2007	47.2/52.8	47.2/52.8	47.1/52.9	48.0/52.0	47.9/52.1	50.6/49.4	47.5/52.5
	2008	47.5/52.5	46.9/53.1	47.4/52.6	48.0/52.0	46.9/53.1	49.4/50.6	46.8/53.2

^a Isomeric configuration is not identified.

the (R)-form. 2-Methylbutanoic acid is biosynthetically linked with L-isoleucin, so that the (S)-configuration in fruits is to be expected.

(R)-6-Methyl-5-hepten-2-ol was predominant in the (R)-form; α -ionone was almost pure enantiomer in all of the cultivars, which was in agreement with previous reports in blackberry (20) and raspberries (19). Terpinen-4-ol also occurred in the major isomer of (R)-form. Terpinen-4-ol has been reported predominantly in the (R)-form in Andes berry (22); however, the (S)-isomer exists in raspberry (11) and passion fruit (17). Limonene had a weak chiral isomeric preference of the (S)-form in most of the cultivars. It has been reported that the major isomer of limonene in Valencia late oranges is the (R)-form (23). However, varying tendency toward the racemization of limonene has been reported for lavender oils, depending upon the method of analysis (24). α -Terpinenol was in a racemic mixture. Naturally occurring racemates of α -terpinenol have been reported in yellow passion fruit (17).

The isomeric form of Furaneol could not be confirmed in this study because of the absence of authentic standards. It is reported that the (R)-isomer has a stronger sugary, jammy, and sweet aroma than the (S)-isomer (25). In this study, Furaneol was in a racemic form; however, the racemates of Furaneol cannot be confirmed in berry samples because the unique keto—enol tautomeric feature in the molecular structure can cause their racemization (25).

In conclusion, the volatile compounds in 'Marion's pedigree were diverse, and some trends in volatile levels among parental and offspring genotypes were observed. For most of the compounds, the concentrations of volatile compounds in progenies were intermediate to the levels of their parents. However, in some cases, such as Furaneol in 'Marion', the concentration in the progeny exceeded that in its parents. Each cultivar in 'Marion's pedigree had its unique chiral isomeric distribution.

LITERATURE CITED

- (1) Finn, C. E.; Strik, B. C.; Lawrence, F. J. 'Marion' trailing blackberry. Fruit Var. J. 1997, 51, 130–133.
- (2) Pyysalo, T. Identification of volatile compounds in hybrids between raspberry (*Rubus idaeus*, L.) and arctic bramble (*Rubus arcticus*, L.). *Z. Lebensm. Unters. Forsch.* **1976**, *162*, 263–272.

- (3) Hirvi, T.; Honkanen, E. The volatiles of two new strawberry cultivars, 'Annelie' and 'Pioneer', obtained by backcrossing of cultivated strawberries with wild strawberries, *Fragaria vesca*, *Rügen* and *Fragaria virginiana*. Z. Lebensm. Unters. Forsch. 1982, 175, 113–116
- (4) Hirvi, T.; Honkanen, E. The aroma of some hybrids between highbush blueberry (*Vaccinium corymbosum*, L.) and bog blueberry (*Vaccinium uliginosum*, L.). Z. Lebensm. Unters. Forsch. **1983**, 176, 346–349.
- (5) Olbricht, K.; Grafe, C.; Weiss, K.; Ulrich, D. Inheritance of aroma compounds in a model population of *Fragaria* × *ananassa* Duch. *Plant Breed.* **2008**, *127*, 87–93.
- (6) Carrasco, B.; Hancock, J. F.; Beaudry, R. M.; Retamales, J. B. Chemical composition and inheritance patterns of aroma in *Fragaria* × ananassa and *Fragaria virginiana* progenies. *HortScience* 2005, 40, 1649–1650.
- (7) Kerler, J.; Jagers, P.; Bouter, N.; Weenen, H.; Bruijnje, A.; Glasius, M.; Duineveld, K.; Heij, H.; Meulenbroek, B. Strawberry derived flavor via plant breeding. In *Frontiers of Flavour Science*, Proceedings of the Weurman Flavour Research Symposium, 9th, Freising, Germany, June 22-25, 1999; Schieberle, P., Engel, K. H., Eds; Deutsche Forschung. Lebensmittel: Garching, Germany, 2000; pp 370-374.
- (8) Du, X.; Qian, M. C. Quantification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone using solid-phase extraction and direct microvial insert thermal desorption gas chromatography-mass spectrometry. *J. Chromatogr.*, A 2008, 1208, 197–201.
- (9) Perkins-Veazie, P.; Clark, J. R.; Huber, D. J.; Baldwin, E. A. Ripening physiology in 'Navaho' thornless blackberries: color, respiration, ethylene production, softening, and compositional changes. J. Am. Soc. Hortic. Sci. 2000, 125, 357–363.
- (10) Moore, P. P.; Burrows, C.; Fellman, J.; Mattinson, D. S. Genotype × environment variation in raspberry fruit aroma volatiles. *Acta Hortic.* **2002**, *585*, 511–516.
- (11) Malowicki, S. M. A.; Martin, R.; Qian, M. C. Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction—gas chromatography—mass spectrometry. J. Agric. Food Chem. 2008, 56, 4128–4133.
- (12) Qian, M.; Wang, Y. Seasonal variation of volatile composition and odor activity value of 'Marion' (*Rubus* spp. *hyb.*) and 'Thornless Evergreen' (*R. laciniatus* L.) blackberries. *J. Food Sci.* 2004, 70, C13–C20.
- (13) Klesk, K.; Qian, M.; Martin, R. R. Aroma extract dilution analysis of cv. Meeker (*Rubus idaeus* L.) red raspberries from Oregon and Washington. J. Agric. Food Chem. 2004, 52, 5155–5161.

- (14) Klesk, K.; Qian, M. Aroma extract dilution analysis of cv. Marion (*Rubus* spp. hyb) and cv. Evergreen (*R. laciniatus* L.) blackberries. *J. Agric. Food Chem.* 2003, 51, 3436–3441.
- (15) Du, X.; Finn, C. E.; Qian, M. C. Volatile composition and odouractivity value of thornless 'Black Diamond'and 'Marion'blackberries. Food Chem. 2010, 119, 1127–1134.
- (16) Armstrong, D. W.; Chang, C.-D.; Li, W. Y. Relevance of enantiomeric separations in food and beverage analyses. *J. Agric. Food Chem.* 1990, 38, 1674–1677.
- (17) Werkhoff, P.; Guntert, M.; Krammer, G.; Sommer, H.; Kaulen, J. Vacuum headspace method in aroma research: flavor chemistry of yellow passion fruits. J. Agric. Food Chem. 1998, 46, 1076– 1093.
- (18) Minh Tu, N. T.; Onishi, Y.; Choi, H.-S.; Kondo, Y. Characteristic odor components of *Citrus sphaerocarpa* Tanaka (Kabosu) coldpressed peel oil. *J. Agric. Food Chem.* 2002, 50, 2908–2913.
- (19) Casabianca, H.; Graff, J. B. Enantiomeric and isotopic analysis of flavor compounds of some raspberry cultivars. J. Chromatogr., A 1994, 684, 360–5.
- (20) Humpf, H. U.; Schreier, P. Bound aroma compounds from the fruit and the leaves of blackberry (*Rubus laciniata L.*). *J. Agric. Food Chem.* **1991**, *39*, 1830–1832.

- (21) Greule, M.; Mosandl, A. Heptan-2-ol and *trans*-linalool oxide (fur.) as inherent indicators of natural blackberry flavors using enantioselective and multielement-MDGC-IRMS analysis. *Eur. Food Res. Technol.* **2008**, *226*, 1001–1006.
- (22) Morales, A. L.; Albarracin, D.; Rodriguez, J.; Duque, C. Volatile constituents from Andes berry (*Rubus glaucus* Benth). J. High Resolut. Chromatogr. 1996, 19, 585–587.
- (23) Hinterholzer, A.; Schieberle, P. Identification of the most odouractive volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. *Flavour Fragrance J.* 1998, 13, 49–55.
- (24) Weinreich, B.; Nitz, S. Influences of processing on the enantiomeric distribution of chiral flavour compounds. Part A. linalyl acetate and terpene alcohols. *Chem. Mikrobiol. Technol. Lebensm.* 1992, 14, 117– 124
- (25) Yaguchi, Y.; Nakahashi, A.; Miura, N.; Sugimoto, D.; Monde, K.; Emura, M. Stereochemical study of chiral tautomeric flavorous furanones by vibrational circular dichroism. *Org. Lett.* 2008, 10, 4883–4885.

Received for review September 29, 2009. Revised manuscript received December 16, 2009. Accepted December 19, 2009.